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What are we trying to do it

• Chemicals are 7% of EU’s greenhouse gasses emissions

• If all of Europes’s electricity went to ethylene production (@ 2V electrolysis), we 
would only produce 67% of world’s ethylene.
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Burdyny and Smith, E&ES, 
12, 1442—1453, (2019)

3 mm anolyte & catholye

Industrial relevant approaches to CO2 electrolysis

Kibria, et. al,  Adv. Mat. , 1807166, (2019)

Cheaper
anode

Liquid Product 
Extraction

Low ohmic
loss, stable

Helps 
selectivity

Advantages:

High ohmic losses

Disadvantages:

Non-H+ crossing
over membrane

CO2 crossover Mechanical
stability issues



Vapor-fed
cathode

Humidified CO2

Liquid-fed
anode

0.1 M KHCO3

50 µm

Porous Ag 
electrode

Cathode: silver 
membranes of 50 

mm thickness

Anode: IrO2 on carbon paper

Membrane: Sustainion 37-50 AEM

Temperature: 30 C

Electrochemical set-up



Issues with outlet flow rate

• It is not straightforward to measure outlet flow rate 

Inaccurate

(? D in viscoscity)

Inaccurate

(? D in conductivity)

Gas Thermal Conductivity 
( W/m K )

CO2 0.017

CO 0.025

H2 0.18

Gas Viscosity
(10-5 Pa s)

CO2 1.47

CO 1.74

H2 0.88



Issues with outlet flow rate

• It is not straightforward to measure outlet flow rate 

Accurate

(Positive Displacement)
MESA Labs- Defender 530

Accurate (Buoyancy)
Bioprocess Control mFlow

Soap bubble

(positive displacement)

Product Line

N2 Bleed line 

(known flowrate)



Anion exchange membrane

Cathodic reactions

CO2 + H2O + 2 e-
 CO + 2 OH-

2 H2O + 2 e-
 2 H2 + 2 OH-

CO2 + H2O + 2 e-
 HCOO- + OH-

Anodic reactions

2 H2O  O2 + 4 e- + 4 H+

CO2 + OH-
 HCO3

-

HCO3
- + OH-

 CO3
2-

HCO3
-

CO3
2-

OH-
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- + H+

 CO2 + H2O

CO3
2- + 2 H+  CO2 + H2O

OH- + H+  H2O

HCOO-
 CO2 + 2 e- + H+
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• We define an ‘A’ value is the 
number of CO2 crossover per e-
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• Using Ag membranes as catalysts gave good, but not great performance.

• We attributed unknown partial current density to formate.

• By measuring our cathodic outlet flow, we were able to determine an ‘A’ value.

Measuring cathodic products

Larrazabal, G., et al., Account.  Mat. Res., 2021Larrazabal, G., et al., Appl. Mat. & Int., 2019



2𝐶𝑂3
2− → 2𝐶𝑂2 + 𝑂2 + 4𝑒−

Anode reactions:

4𝐻𝐶𝑂3
− → 4 𝐶𝑂2 + 𝑂2 + 2𝐻2𝑂 + 4𝑒−

4𝑂𝐻− → 2𝐻2𝑂 + 𝑂2 + 4𝑒−

4

2

0

CO2/O2

ratio

𝑂𝐻− + 𝐶𝑂𝑂𝐻− → 𝐻2𝑂 +𝐶𝑂2 + 2𝑒− 0

• By measuring our anodic outlet flow we can get the 
amount of oxygen produced.

• We can correlate our CO2/O2 ratio to what species is 
predominately going through the membrane.

Measuring anodic products

A

value

1

1/2

0

0

Larrazabal, G., et al., Account.  Mat. Res., 2021



• 100% faradaic efficiency is great to 
see

Total system analysis

• Full carbon balance is just as 
important to see.

Larrazabal, G., et al., ACS Appl. Mat & Int., 2019



Formate: Not a wanted product

• We never produce formate, but rather postassium formate

• Where does the K+ come from?

• KHCO3 is usually the source.

𝐾𝐻𝐶𝑂3 + 𝐶𝑂2 → 𝐾𝐶𝑂𝑂𝐻 + ൗ1 2𝑂2 + 𝐶𝑂2

Name Value ($/Kg) Aldrich Value ($/kmole)

Potassium bicarbonate 120 1.20

Potassium formate 100 1.19



Analyzing copper for CO2 reduction

• With copper producing liquid products, we decided to go with a 
GDE approach.

• 70 nm sputtered Cu on a gas diffusion layer.

Electrode SEM



Testing different electrolytes

• We tested in both neutral and basic electrolytes. 

• Basic electrolytes are effectively ‘ CO2 scrubbers’

CO2 + 𝑂𝐻− → 𝐻𝐶𝑂3
−

𝐻𝐶𝑂3
− + 2𝑂𝐻− → 𝐶𝑂3

2− +𝐻2𝑂

pKa (effective)=7.8 

pKa = 10.3 

• CO2 reduction naturally produces OH-, thus increasing
‘scrubbing’ capability of catholyte gas

CO2 + H2O + 2 e-
 CO + 2 OH-

• Even at open-circuit, significant CO2 is consumed.

Ma, M., et al E&ES 2020

Doi:10.1039/D0EE00047G

https://doi.org/10.1039/D0EE00047G


Comparison of selectivites in different electrolytes

• How important is it to take into consideration actual gas flow rate leaving reactor?

Compared to uncorrected for outlet flow rate

Ma, M., et al., E&ES,2020



Liquid selectivites

• We see 8 different liquid products

• Minimal variation at different current
regimes.

• We see significant products coming out 
the anode.

What is going
on here

Ma, M., et al., E&ES,2020



Understanding membrane crossover

Proposed carbon balance paths via CO3
2- or HCO3

- formation

from CO2 and a subsequent CO2 production from CO3
2- or HCO3

-

2𝐶𝑂3
2− → 2𝐶𝑂2 + 𝑂2 + 4𝑒−

Anode reactions:

4𝐻𝐶𝑂3
− → 4 𝐶𝑂2 + 𝑂2 + 2𝐻2𝑂 + 4𝑒−

4𝑂𝐻− → 2𝐻2𝑂 + 𝑂2 + 4𝑒−

4

2

0

CO2/O2 ratio

4𝐶𝑂𝑂𝐻− → 4𝐻𝐶𝑂𝑂𝐻 + 𝑂2 + 4𝑒− 0

4𝐶𝐻3𝐶𝑂𝑂
− → 4𝐶𝐻3𝐶𝑂𝑂𝐻 + 𝑂2 + 4𝑒− 0

pKa of HCO3/CO2 = 7.8

Ma, M., et al., E&ES, 2020



Initial solutions:

50 ml 1 M KOH catholyte

50 ml 1 M KOH anolyte

• With basic electrolytes there is no CO2 emitting from anolyte.

Catholyte pH reduced to 11.6

• A smaller reservoir shows CO2 just needs to satruate the solution.

Initial solutions:

20 ml 1 M KOH catholyte

20 ml 1 M KOH anolyte
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Device analysis

• 100% faradaic efficiency

• Full carbon balance

Ma, M., et al., E&ES, 2020

J 

(mA/cm2)

∅unused 𝐶𝑂2

(ml/min)

∅𝐶𝑂2 𝑡𝑜 𝑔𝑎𝑠

(ml/min)

∅𝐶𝑂2 𝑡𝑜 𝑙𝑖𝑞𝑢𝑖𝑑

(ml/min)

∅𝐴𝑛𝑜𝑑𝑒

(ml/min)

∅𝑡𝑜𝑡𝑎𝑙 𝐶𝑂2

(ml/min)

200 40.806 0.922 0.3387 3.11156 45.178

250 39.735 1.169 0.3928 3.80596 45.103

300 38.616 1.379 0.4779 4.50385 44.977

∅𝑖𝑛𝑙𝑒𝑡 𝐶𝑂2 = ∅𝑢𝑛𝑢𝑠𝑒𝑑 𝐶𝑂2 + ∅𝐶𝑂2 𝑡𝑜 𝑔𝑎𝑠 + ∅𝐶𝑂2 𝑡𝑜 𝑙𝑖𝑞𝑢𝑖𝑑 + ∅𝑜𝑢𝑡 𝑡ℎ𝑒 𝑎𝑛𝑜𝑑𝑒

Using 1 M KHCO3 as initial electrolyte

out the anode

Inlet CO2 flow: 

45 ml/min



We still screwed up our analysis ?

• If we have a cell with 50 mL catholyte when we start, when we finish can we multiply
our HPLC/NMR liquid product data on a final water volume of 50 mL?

• When carbonates transfer across the 
membrane it brings with it a lot of water

Ma, et al. ACS Energy Letters, 2022

• We found the water crossover matches the 
free ion hydration number

• In other words, water transfer is membrane
independent.



How big of a screw up is this?

• The overestimation is not that big for shorter time period operations

• If a cation exchange membrane is used, non-compensated membranes will lead to an 
underestimation of produts

Ma, et al. ACS Energy Letters, 2022

For 50 mL reservoirs and operating at 400 mA



How do CEM & Bipolar membranes compare ?

• Selectivity does not vary as long as you have a gapped cell (1cm for us).

• The CO2 crossover is quite different.

Ma, M., et al., Chem. Sci., 2020



Total cell voltage

• Ohmic resistance in electrolytes dominate
cell voltage.

• Conductivity does not account for water-
splitting in BPM.

• CO electrolysis does not have these issues.

0 14 014pH

CEM-AEM

CO+OH-

CO2
-

O2+4H+

H2O

830 mV



@-1.42 V @-1.44 V @-1.44 V @-1.47 V

Varying alkalinity for CO electrolysis

• Transient tests (1 hour) allowed us to see the effects of pH

• Acetate increases whereas other C2 products decrease as 
alkalinity increses

• Ethanol seems to decrease faster than ethylene

• Trends seem to be related to linear shift
(rather than logarithmic) with alkaline
concentrations.

Ma et al., E&ES, 2022



Understanding Degradation Mechanisms



• It is well known in the field that H2 evolution increases over time

• It is thought that this is due to water ‘flooding’ into the cathode preventing 
CO2 mass transfer.

• Sometimes oscillations come with this.

Is water ‘flooding’ our catalyst ?

Understanding oscillations



• We thought excess water may prevent efficient CO2 mass 
transfer to the catalyst

• We used synchrotron X-ray scattering at ESRF to analyse this.

Designing a synchrotron experiment

X-ray

CO2 Reactor

Cathode GDE

Cu Catalyst

Membrane

Synchrotron

Experiments

Raw X-ray results



• We can easily see the change in the surface oxide in 
Cu being reduced.

Analysing copper in our device

• We can also monitor Cu as a 
function of height within the gas 
diffusion layer
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• By using variations in background signal in q-space where there are no Bragg peaks, 
we can use this as a proxy for water content. 

Analysing water

• Lower potential, more water, more 
hydrogen.

From earlier

• We can relate water content to 
potential variations.



• In a different experiment we measured CO2 to O2 ratio

Analysing CO2 to O2 ratio

• Membranes are 2.5x more 
conductive with OH- compared to 
CO3

2- transferring.

• We notice the CO2 to O2 ratio 
decreases as the potential decreases

• This also means are cathode is being 
starved of CO2.



• When looking at salts we see KHCO3, but no K2CO3

• We see the salt deposition before water floods the cell 

Mass transfer issues

100 mA/cm2



Conclusions

• Engineering CO2 electrolysis will be much more complex than water electrolysis.

• The field is understanding and adapting quite quickly. 

Ma, M., et al., E&ES, 2020Larrazabal, G., et al., 

Appl. Mat. & Int., 2019

out the anode
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• The X-rays had no noticeable impact on our selectivity.

• We also did some experiments at DTU and some at ESRF with no noticeable 
change.

X-ray impact

With X-rays.Without X-rays.


