

Understanding of CO₂ electrolysis from a device perspective

Brian Seger University of Notre Dame March 30th , 2023 Chemicals & Products Renewable Electricity 02+H20 CO2+H2O Water CO Ethylene Carbon Dioxide Power

DTU

Technical University of Denmark (DTU)

- Hans Christian Ørsted founded the university in 1829.
 - Also discovered electro-magnetism and metallic aluminum
- 11,000 Bachelor& Master Students
- 1300 PhD students

DTU

• One Bachelor study line in English, all Masters and PhD courses in English

Rankings

- US News: #165
- World University Research Rankings: #2

The power of electrochemicals

• Denmark will reach 100% renewables by 2027

Should we use excess electricity to make hydrocarbons?

Overall: $H_2O + CO_2 \rightarrow C_xO_yH_z + O_2$

DTU

₩

What are we trying to do it

• If all of Europes's electricity went to ethylene production (@ 2V electrolysis), we would only produce 67% of world's ethylene.

DTU

What catalyst should we use?

Electrodo	Potential (V)	Current density	Faradaic efficiency/%							
Electrode	vs. nne		<u> </u>	C ₂ II ₄	LIOII		0	псоо	112	10(41
Cu	- 1.44	5.0	33.3	25.5	5.7	3.0	1.3	9.4	20.5	103.5*
Au	-1.14	5.0	0.0	0.0	0.0	0.0	87.1	0.7	10.2	98.0
Ag	- 1.37	5.0	0.0	0.0	0.0	0.0	81.5	0.8	12.4	94.6
Zn	- 1.54	5.0	0.0	0.0	0.0	0.0	79.4	6.1	9.9	95.4
Pd	-1.20	5.0	2.9	0.0	0.0	0.0	28.3	2.8	26.2	60.2
Ga	- 1.24	5.0	0.0	0.0	0.0	0.0	23.2	0.0	79.0	102.0
Рb	- 1.63	5.0	0.0	0.0	0.0	0.0	0.0	97.4	5.0	102.4
Hg	- 1.51	0.5	0.0	0.0	0.0	0.0	0.0	99.5	0.0	99.5
In	-1.55	5.0	0.0	0.0	0.0	0.0	2.1	94.9	3.3	100.3
Sn	- 1.48	5.0	0.0	0.0	0.0	0.0	7.1	88.4	4.6	100.1
Cd	-1.63	5.0	1.3	0.0	0.0	0.0	1 3.9	78.4	9.4	103.0
TI	- 1.60	5.0	0.0	0.0	0.0	0.0	0.0	95.1	6.2	101.3
Ni	- 1.48	5.0	1.8	0.1	0.0	0.0	0.0	1.4	88.9	92.4†
Fe	- 0.91	5.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	94.8
Pt	- 1.07	5.0	0.0	0.0	0.0	0.0	0.0	0.1	95.7	95.8
Ti	- 1.60	5.0	0.0	0.0	0.0	0.0	tr.	0.0	99.7	99.7

Table 1. Various products from the electroreduction of CO₂

Electrolyte: 0.1 M KHCO₃; temperature: 18.5 ± 0.5 °C.

* The total value contains C_3H_5OH (1.4%), CH_3CHO (1.1%) and C_2H_5CHO (2.3%) in addition to the tabulated substances.

+ The total value contains C_2H_6 (0.2%). Hori, Electrochim Act, 1994

Bagger et al. Chem-PhysChem 2017

Nitopi et al., 2019 Chem Reviews

Analyzing copper for CO₂ reduction

- With copper producing liquid products, we decided to go with a flowing liquid on the cathode approach.
- The liquid catholyte allows us to vary pH

Function of current

 $Gas out = Gas in \pm Reaction - Crossover$

Function of carbon/charge ratio

Testing different electrolytes

- We tested in both neutral and basic electrolytes.
- Basic electrolytes are effectively 'CO₂ scrubbers'

 $CO_2 + OH^- \rightarrow HCO_3^-$

 $HCO_{3}^{-} + 2OH^{-} \rightarrow CO_{3}^{2-} + H_{2}O$

• Even at open-circuit, significant CO₂ is consumed.

 $Gas out = Gas in \pm Reaction - Crossover - Scrubbed$

Comparison of selectivites in different electrolytes

• How important is it to take into consideration actual gas flow rate leaving reactor?

DTU

Liquid selectivites

- When we add liquid products we get 100% selectivity of products
- Minimal variation at different current regimes.

Ma, M., et al E&ES 2020

Larrazabal, G., et al., Account. Mat. Res., 2021

Understanding membrane crossover

Device analysis

• Account for 100% of our electrons

• Full carbon balance

Ma, M., et al., *E&ES*, 2020

$\phi_{inlet CO_2} = \phi_{unused CO_2} + \phi_{CO_2 to gas} + \phi_{CO_2 to liquid} + \phi_{out the anode}$							
J	$\phi_{unused CO_2}$	$\phi_{CO_2 to gas}$	$\phi_{CO_2 \ to \ liquid}$	ϕ_{Anode}	$\phi_{total CO_2}$		
(mA/cm ²)	(ml/min)	(ml/min)	(ml/min)	(ml/min)	(ml/min)		
200	40.8	0.92	0.34	3.1	45.2		
250	39.7	1.17	0.39	3.8	45.1		
300	38.6	1.38	0.48	4.5	45.0		

Using 1 M KHCO₃ as initial electrolyte

Inlet CO₂ flow: 45 ml/min

DTU Physics

More problems: Oscillations

- It is well known in the field that H₂ evolution increases over time
- It is thought that this is due to water 'flooding' into the cathode preventing CO₂ mass transfer.
- Sometimes oscillations come with this.

Is water 'flooding' our catalyst ?

Designing a synchrotron experiment

- We thought excess water may prevent efficient CO₂ mass transfer to the catalyst
- We used synchrotron X-ray scattering at ESRF to analyse this.

*CO*² *Reactor*

GDE

	1	1	
		X	

Analysing copper in our device

- We can easily see the change in the surface oxide in Cu being reduced.
- We can also monitor Cu as a function of height within the gas diffusion layer

Analysing water

- By using variations in background signal in q-space where there are no Bragg peaks, we can use this as a proxy for water content.
- We can relate water content to • potential variations.
- Lower potential, more water, more hydrogen.

DTU

Mass transfer issues

- When looking at salts we see KHCO₃, but no K₂CO₃
- We see the salt deposition before water floods the cell

Oscillation hypothesis

Salt precipitation of various cations

DTU

Salt precipitation of various cations

- Normalizing scattering between experiments shows the influence of water
- We show that Cs not only increases electric field, it's high solubility also prevents salt build-up.

A Solution !!- CO Electrolysis

Anion exchange membrane

 CO does not form carbonates, thus no issues with CO₂ coming out the anode

• CO does not buffer the pH, thus more efficient alkaline pH can be used

• CO is not hard to produce.

DTU

Fundamenal Analysis on CO Reduction

- Using an EC-MS, we can see many products in-situ.
- These devices operate at $\sim 1 \text{ mA/cm}^2$
- From these results we discover acetaldehyde is the precursor to ethanol

Spectro Inlets – DTU Spinoff

Varying alkalinity for CO electrolysis

- Acetate increases whereas other C₂ products decrease as alkalinity increases
- Ethanol seems to decrease faster than ethylene

Formate

 H_2

CH/

CO

 C_2H_4

Glycolaldehyde

n-Propanol

Allyl Alcohol

Acetaldehyde

Ethylene Glycol

Ethanol

Acetate

Ma, et al. E&ES. 2022 15, 2470-2478

Issues with CO electrolysis

- The flooding is not a major issue with CO electrolysis.
- Ir crossover is an issue, though for CO₂ electrolysis this was not an issue.
- We believe this is a pH issue (CO, pH=13), CO₂ (pH=8)
- Switching to a Ni anode basically resolved this.

Xu. et al., Submitted, Preprint on Research Square

Varying alkalinity for CO electrolysis

- Acetate goes through our membrane and starts acidifying our anode
- More acidic pH corrodes our anode
- By removing the acetate at the anode, we can operate over 100 hours.

Xu. et al., Submitted, Preprint on Research Square

Conclusions

• We need to be smart in our scientific progression.

100

80

60

40

20 -

Faradaic efficiency (%)

- H₂

- CO₂ crossover is a huge issue, which I am not sure we can resolve.
- CO electrolysis has substantial potential and we are looking to engage with companies now.

200

Problem

Problem

150

Time (min)

100

200

250

300

350

 $-\bullet$ CO $-\bullet$ CH₄ $-\bullet$ C₂H₄ $-\bullet$ C₃H_e

Solution

250

Current density (mA/cm²)

300

Acknowledgements

The VILLUM Center for the Science of Sustainable Fuels and Chemicals

THE VELUX FOUNDATIONS

VILLUM FONDEN 💥 VELUX FONDEN

ESRF Collaborators

Marta

Mirolo

Jakub Drnec

Gaston Larrazabal

Ming Ma

To learn more about our

research go to

SegerResearch.com

★ Excellence in Science and Technology

Roosa Ilvonen

Moss

Asger

Sahil Garg

Carlos Rodriguez

Yu Qiao Qiucheng Xu

Bjørt Joensen Jensen

Clara

Wanyu Deng

Collaborators Ib Chorkendorff Kasper Therkildsen

DTU Physics

More Synchrotron Data

 We also varied GDL hydrophobicity and membrane thickness to monitor water crossover

Xu. et al., Submitted, Preprint on Research Square