

Analyzing the Complete Carbon Balance in High Current Density Electrochemical CO₂ Reduction Reactors

Brian Seger 2019 NanoGe Fall Meeting (SolCat19) Nov 6, 2019

Chemicals Before Fuels

- Chemicals need functionality, and purity.
- Fuels just need to burn

Material	# of e⁻	Valu	World Prod.	
		(\$/ton)	(\$/MC)	(megaton)
Hydrogen	2	1000	0.010	60
СО	2	750-2200	0.110	75
Formic Acid	2	650	0.150	0.8
Formaldehyde	4	530	0.041	10
Methanol	6	496	0.027	160
Methane	8	150	0.003	4000
Ethanol	12	600	0.024	110
Ethylene	12	1050	0.025	180

H₂- <u>https://www.hydrogen.energy.gov/</u> CO- <u>https://www.openpr.com/</u> COOH- A. A. N. Afshar, Chemical Profile: Formic Acid. *TranTech Consultants, Inc.*, (2014). CHOOH - <u>https://www.icis.com</u> CH₃OH <u>Methanex.com</u> CH₄- EIA (<u>www.eia.gov</u>), Acetic Acid- <u>Prnewswire.com/</u>, Ethylene Glycol-<u>https://www.intratec.us/</u>, <u>Ullmann's Encyc. of Ind. Chem</u>. Acetone- <u>Platts</u>, <u>Ullmann's Encyc. of</u> <u>Ind. Chem</u>, Ethanol- <u>Nasdaq</u>, <u>http://www.ethanolrfa.org</u> Ethylene- <u>Platts</u> Denmark will reach 100% renewables by 2028

Industrial relevant approaches to eCO₂ reduction

3 mm anolyte & catholye

Burdyny and Smith, E&ES, 12, 1442—1453, (2019)

Disadvantages:

Kibria, et. al, Adv. Mat., 1807166, (2019)

Electrochemical set-up

Anode: IrO₂ on carbon paper Membrane: Sustainion 37-50 AEM Temperature: 30 C

Cathode: silver membranes of 50 µm thickness

Characterization & performance data

- SEM shows uniform pores of varying size.
- We did not see any significant performance difference between membranes.

?? Faradaic Efficiency Partial Current Density

Larrazabal, G., et al., ChemSusChem, 2019

Reactors

What goes in is not what comes out

What goes in does not come out

- CO₂ that goes into the reactor can do multiple things.
 - 1) React to form
 - Liquid products, thus will not be in the gas flow
 - C2 products, which will ½ the gas flow rate
 - 2) Equilibrate into the electrolyte $CO_2 + OH^- \rightarrow HCO_3^ CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$
 - 3) Get transferred across the membrane

Anion exchange membrane

Issues with outlet flow rate

• It is very hard to measure outlet flow rate

Inaccurate (? Δ in conductivity)

Accurate (Positive Displacement) MESA Labs- Defender 530 Humidity locks up device

Old School (Accurate, manual)

Accurate (Buoyancy) Bioprocess Control uFlow

Inaccurate (? Δ in viscoscity)

Cathodic reactions	Δ in outlet flow/2e-	
$CO_2 + H_2O + 2 e^- \rightarrow CO + 2 OH^-$	0 mol	
$2 H_2O + 2 e^- \rightarrow 2 H_2 + 2 OH^-$	1 mol	
$CO_2 + H_2O + 2 e^- \rightarrow HCOO^- + OH^-$	-1 mol	

We clearly have lots of CO₂ transferring over to the anode.

- A further analysis of anode gas flow gives insights into membrane crossover.
- This can give us details relating to:
 - Local pH
 - Membrane conductivity

Analyzing our CO₂ crossover

0,

H₂0

0.5

Jpn., 55, 660 (1982)

- Carbonate transfer allows us to learn 2 very important things.
 - 1. Carbonate is going through, hurting conductivity
 - 2. Locally we are highly basic

Liu, Z.;J. Electr. Soc.,165(15) J3371-J3377 (2018)

Total system analysis

- We have measures formate via NMR from condensed cathode droplets and at the anode
- Our cell voltage is compareable to other Ag based devices.
- Anolyte measurements show a loss in
 O₂ faradaic efficiencies at high currents.
- Non-OER consists of
 - Formate oxidation
 - Corrosion of carbon paper on anode.

Larrazabal, G., et al., ChemSusChem, 2019

<u>CO</u>₂ conversion to CO

• Another important Figure of Merit is CO₂ conversion to CO.

CO

150

100

200

250

j_{total} / mA cm⁻²

300

350

• Our inlet CO₂ flow rate is 100 mL/min, thus our consumption is about 12%.

HCOO[−]

Neutralized

• Our CO₂ conversion to CO is between 30-40%.

В

Fraction of consumed CO_2 / %

80

60

40

20

Α

Total CO₂ consumption / ml_n min⁻¹

12

8

4

100

200

j_{total} / mA cm⁻²

300

400

Mass transfer issues prevent

Analyzing copper for CO₂ reduction

- With copper producing liquid products, we decided to go with a GDE approach.
- 70 nm sputtered Cu on a gas diffusion layer.

SEM

Testing different electrolytes

- We tested in both neutral and basic electrolytes.
- Basic electrolytes are effectively 'CO₂ scrubbers'

 $CO_2 + OH^- \rightarrow HCO_3^-$ pKa (effective)=7.8 $HCO_3^- + 2OH^- \rightarrow CO_3^{2-} + H_2O$ pKa = 10.3

- Even at open-circuit, significant CO₂ is consumed.
- CO₂ reduction naturally produces OH⁻, thus increasing 'scrubbing' capability of catholyte gas

 $CO_2 + H_2O + 2 e^- \rightarrow CO + 2 OH^-$

Ma, M., et al., Submitted

Comparison of selectivites in different electrolytes

• We could now test in varying alkalinities and test for selectivity.

• Literature indicates that higher pH improves ethylene production.

Ma, M., et al., *Submitted*

- We show higher pH does not improve ethylene production.
- Methane is suppressed at higher pH though.

Liquid selectivites

- We see 8 different liquid products
- Minimal variation at different current regimes.
- We see significant products coming out the anode.

CO

Gas

outlet:

gas mixture

Gas products

GDE cathode (-)

membrane

Anode(+)

Catholyte

Anolyte

Ma, M., et al., *Submitted*

Understanding membrane crossover

Proposed carbon balance paths via CO_3^{2-} or HCO_3^{-} formation from CO_2 and a subsequent CO_2 production from CO_3^{2-} or HCO_3^{-}

Anode reactions:

<u>CO₂/O₂ ratio</u>

 $4CH_3COO^- \rightarrow 4CH_3COOH + O_2 + 4e^- \longrightarrow 0$

pKa of $HCO_3/CO_2 = 7.8$

• Varying the current densities accelerates pH modifications.

- With basic electrolytes there is no CO₂ emitting from anolyte.
- A smaller reservoir shows CO₂ just needs to satruate the solution.

Carbon balance

- A full carbon balance helps validate our results.
- We have succeeded on this.
- 70% of our CO₂ is lost to the anode and only 30% is converted.
- The anode is a CO_2/O_2 mix, which is not good for recycling.

J	Ø _{unused} CO ₂	$\phi_{CO_2 to gas}$	$\phi_{CO_2 to liquid}$	Ø _{Anode}	$\phi_{total CO_2}$
(mA/cm ²)	(ml/min)	(ml/min)	(ml/min)	(ml/min)	(ml/min)
200	40.806	0.922	0.3387	3.11156	45.178
250	39.735	1.169	0.3928	3.80596	45.103
300	38.616	1.379	0.4779	4.50385	44.977

 $\phi_{inlet CO_2} = \phi_{unused CO_2} + \phi_{CO_2 to gas} + \phi_{CO_2 to liquid} + \phi_{out the anode}$

Using 1 M KHCO₃ as initial electrolyte Inlet CO₂ flow: 45 ml/min

Stability

• The reactor's performance is relatively stable over a 2 hour time frame.

• We measured potential vs. current, but we can not plot this versus RHE.

Conclusions and Future Directions

- Both near 100% faradaic efficiency and a carbon balance are neccessary to ensure proper analysis of high-current density reactors.
- Formate is a significant product for Ag at high current densities.
- Using a basic electrolyte complicates the analysis, and is less beneficial than previously thought.

Larrazabal, G., et al., ChemSusChem, 2019

Ma, M., et al., Submitted

Acknowledgements

• I would like to acknowledge both the funding agencies and the DTU high current density CO₂ reduction group.

Including a Reference Electrode

- We put a reference electrode in through the anolyte.
- Impedance allowed us to determine membrane losses.
- Our cathodic potential is where we should expect formate production.

Proposed carbon balance paths via CO_3^{2-} or HCO_3^{-} formation from CO_2 and a subsequent CO_2 production from CO_3^{2-} or HCO_3^{-}

- This can give us details relating to:
 - Local pH
 - Membrane conductivity

