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Chemicals Before Fuels

Material # of e- Value World Prod. 
(megaton)($/ton) ($/MC)

Hydrogen 2 1000 0.010 60 

CO 2 750-2200 0.110 75

Formic Acid 2 650 0.150 0.8 

Formaldehyde 4 530 0.041 10 

Methanol 6 496 0.027 160 

Methane 8 150 0.003 4000

Ethanol 12 600 0.024 110 

Ethylene 12 1050 0.025 180

• Chemicals need functionality, and purity.

• Fuels just need to burn

H2- https://www.hydrogen.energy.gov/ CO- https://www.openpr.com/ COOH- A. A. N. Afshar, 
Chemical Profile: Formic Acid. TranTech Consultants, Inc.,  (2014). CHOOH - https://www.icis.com   
CH3OH Methanex.com CH4- EIA (www.eia.gov), Acetic Acid- Prnewswire.com/ , Ethylene Glycol-
https://www.intratec.us/  , Ullmann's Encyc. of Ind. Chem. Acetone- Platts , Ullmann's Encyc. of 
Ind. Chem, Ethanol- Nasdaq, http://www.ethanolrfa.org Ethylene- Platts

• Denmark will reach 100% renewables
by 2028

75 Mton/yr
@ 3V

4.3 x 1011 kWh/yr

This is 100 times Denmark’s electricity consumption

https://www.hydrogen.energy.gov/pdfs/htac_oct13_10_bonner.pdf
https://www.openpr.com/news/558500/Carbon-Monoxide-Market-Size-Worth-USD-3218-87-Million-by-2022.html
https://www.icis.com/resources/news/2005/12/08/592331/chemical-profile-formaldehyde/
https://www.methanex.com/our-business/pricing
http://www.eia.gov/
https://www.prnewswire.com/news-releases/research-and-markets---global-acetic-acid-market-2016-2022-focus-on-vam-pta-acetic-anhydride-acetate-esters-industries-300465028.html
https://www.intratec.us/chemical-markets/ethylene-glycol-price
https://onlinelibrary.wiley.com/doi/book/10.1002/14356007
https://www.platts.com/news-feature/2015/petrochemicals/global-solvents-overview/index
https://onlinelibrary.wiley.com/doi/book/10.1002/14356007
https://www.nasdaq.com/markets/ethanol.aspx
http://www.ethanolrfa.org/resources/industry/statistics/#1454098996479-8715d404-e546
https://www.platts.com/news-feature/2014/petrochemicals/pgpi/ethylene


Burdyny and Smith, E&ES, 
12, 1442—1453, (2019)

3 mm anolyte & catholye

Industrial relevant approaches to eCO2 reduction

Kibria, et. al,  Adv. Mat. , 1807166, (2019)

Cheaper
anode

Liquid Product 
Extraction

Low ohmic
loss, stable

Helps 
selectivity
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High ohmic losses
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Non-H+ crossing
over membrane

CO2 crossover Mechanical
stability issues
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Vapor-fed
cathode

Humidified CO2

Liquid-fed
anode

0.1 M KHCO3

50 µm

Porous Ag 
electrode

Cathode: silver 
membranes of 50 

mm thickness

Anode: IrO2 on carbon paper

Membrane: Sustainion 37-50 AEM

Temperature: 30 C

Electrochemical set-up



Characterization & performance data

• SEM shows uniform pores of 
varying size.

• We did not see any significant
performance difference between
membranes.

0.45 mm 0.8 mm 5 mm1.2 mm

Larrazabal, G., et al., ChemSusChem, 2019

??
Faradaic Efficiency

Partial Current Density



Reactors

What goes in is not what comes out



What goes in does not come out

Anion exchange membrane

Cathodic reactions

CO2 + H2O + 2 e-
 CO + 2 OH-

2 H2O + 2 e-
 2 H2 + 2 OH-

CO2 + H2O + 2 e-
 HCOO- + OH-

Anodic reactions

2 H2O  O2 + 4 e- + 4 H+

CO2 + OH-
 HCO3

-

HCO3
- + OH-

 CO3
2-

HCO3
-

CO3
2-

OH-

HCOO-

• CO2 that goes into the reactor can do 
multiple things. 

CO2 + 𝑂𝐻− → 𝐻𝐶𝑂3
−

CO2 + 2𝑂𝐻− → 𝐶𝑂3
2− + 𝐻2𝑂

2)   Equilibrate into the electrolyte

1)    React to form

- Liquid products, thus will not be in 
the gas flow

- C2 products, which will ½ the gas 
flow rate

3) Get transferred across the membrane

HCO3
- + H+

 CO2 + H2O

CO3
2- + 2 H+  CO2 + H2O

OH- + H+  H2O

HCOO-
 CO2 + 2 e- + H+



Issues with outlet flow rate

• It is very hard to measure outlet flow rate 

Inaccurate

(? D in conductivity)

Inaccurate

(? D in viscoscity)

Humidity locks up device

Accurate

(Positive Displacement)
MESA Labs- Defender 530

Accurate

(Buoyancy)
Bioprocess Control uFlow

Old School

(Accurate, manual)



Unknown

Cathodic reactions

CO2 + H2O + 2 e-
 CO + 2 OH-

2 H2O + 2 e-
 2 H2 + 2 OH-

CO2 + H2O + 2 e-
 HCOO- + OH-

D in outlet flow/2e-

0 mol

1 mol

-1 mol

• We clearly have lots of CO2 transferring over to the anode.

Larrazabal, G., et al., ChemSusChem, 2019



2𝐶𝑂3
2− → 2𝐶𝑂2 + 𝑂2 + 4𝑒−

Anode reactions:

4𝐻𝐶𝑂3
− → 4 𝐶𝑂2 + 𝑂2 + 2𝐻2𝑂 + 4𝑒−

4𝑂𝐻− → 2𝐻2𝑂 + 𝑂2 + 4𝑒−

4

2

0

CO2/O2 ratio

𝑂𝐻− + 𝐶𝑂𝑂𝐻− → 𝐻2𝑂 +𝐶𝑂2 + 2𝑒− 0

• A further analysis of anode gas flow 
gives insights into membrane crossover.

• This can give us details relating to: 
- Local pH

- Membrane conductivity



Analyzing our CO2 crossover

Liu, Z.;J. Electr. Soc.,165(15) 

J3371-J3377 (2018)

Hori and Suzuki, Bull. Chem. Soc. 
Jpn., 55, 660 (1982 )

• Carbonate transfer allows us to learn 2 very important things.

1. Carbonate is going through, hurting conductivity

2.      Locally we are highly basic



• We have measures formate via 
NMR from condensed cathode 
droplets and at the anode

• Our cell voltage is compareable to 
other Ag based devices.

• Anolyte measurements show a loss in 
O2 faradaic efficiencies at high currents.

• Non-OER consists of
• Formate oxidation

• Corrosion of carbon paper on anode.

Total system analysis

Larrazabal, G., et al., ChemSusChem, 2019



• Another important Figure of Merit is CO2 conversion to CO.

• Our inlet CO2 flow rate is 100 mL/min, thus our consumption is about 12%.

• Our CO2 conversion to CO is between 30-40%. 

CO2 conversion to CO

Mass transfer issues prevent
higher current densities



Analyzing copper for CO2 reduction

• With copper producing liquid products, we decided to go with a 
GDE approach.

• 70 nm sputtered Cu on a gas diffusion layer.

Electrode SEM



Testing different electrolytes

• We tested in both neutral and basic electrolytes. 

• Basic electrolytes are effectively ‘ CO2 scrubbers’

CO2 + 𝑂𝐻− → 𝐻𝐶𝑂3
−

𝐻𝐶𝑂3
− + 2𝑂𝐻− → 𝐶𝑂3

2− +𝐻2𝑂

pKa (effective)=7.8 

pKa = 10.3 

• Even at open-circuit, significant CO2 is consumed.

• CO2 reduction naturally produces OH-, thus increasing
‘scrubbing’ capability of catholyte gas

CO2 + H2O + 2 e-
 CO + 2 OH-

Ma, M., et al., Submitted



Comparison of selectivites in different electrolytes

• We could now test in varying alkalinities and test for selectivity.

Compared to uncorrected
for outlet flow rate

• Literature indicates that higher pH improves ethylene production.

• We show higher pH does not improve ethylene production.

• Methane is suppressed at higher pH though.

Ma, M., et al., Submitted



Liquid selectivites

• We see 8 different liquid products

• Minimal variation at different current
regimes.

• We see significant products coming out 
the anode.

What is going
on here

Ma, M., et al., Submitted



Understanding membrane crossover

Proposed carbon balance paths via CO3
2- or HCO3

- formation

from CO2 and a subsequent CO2 production from CO3
2- or HCO3

-

2𝐶𝑂3
2− → 2𝐶𝑂2 + 𝑂2 + 4𝑒−

Anode reactions:

4𝐻𝐶𝑂3
− → 4 𝐶𝑂2 + 𝑂2 + 2𝐻2𝑂 + 4𝑒−

4𝑂𝐻− → 2𝐻2𝑂 + 𝑂2 + 4𝑒−

4

2

0

CO2/O2 ratio

4𝐶𝑂𝑂𝐻− → 4𝐻𝐶𝑂𝑂𝐻 + 𝑂2 + 4𝑒− 0

4𝐶𝐻3𝐶𝑂𝑂
− → 4𝐶𝐻3𝐶𝑂𝑂𝐻 + 𝑂2 + 4𝑒− 0

pKa of HCO3/CO2 = 7.8



Initial solutions:

50 ml 1 M KHCO3 catholyte  

50 ml 1 M KHCO3 anolyte

• Varying the current densities accelerates pH modifications.

Initial solutions:

50 ml 1 M KOH catholyte

50 ml 1 M KOH anolyte

• With basic electrolytes there is no CO2 emitting from anolyte.

Catholyte pH reduced to 11.6

• A smaller reservoir shows CO2 just needs to satruate the solution.

Initial solutions:

20 ml 1 M KOH catholyte

20 ml 1 M KOH anolyte



Carbon balance 

J 

(mA/cm2)

∅unused 𝐶𝑂2

(ml/min)

∅𝐶𝑂2 𝑡𝑜 𝑔𝑎𝑠

(ml/min)

∅𝐶𝑂2 𝑡𝑜 𝑙𝑖𝑞𝑢𝑖𝑑

(ml/min)

∅𝐴𝑛𝑜𝑑𝑒

(ml/min)

∅𝑡𝑜𝑡𝑎𝑙 𝐶𝑂2

(ml/min)

200 40.806 0.922 0.3387 3.11156 45.178

250 39.735 1.169 0.3928 3.80596 45.103

300 38.616 1.379 0.4779 4.50385 44.977

∅𝑖𝑛𝑙𝑒𝑡 𝐶𝑂2 = ∅𝑢𝑛𝑢𝑠𝑒𝑑 𝐶𝑂2 + ∅𝐶𝑂2 𝑡𝑜 𝑔𝑎𝑠 + ∅𝐶𝑂2 𝑡𝑜 𝑙𝑖𝑞𝑢𝑖𝑑 + ∅𝑜𝑢𝑡 𝑡ℎ𝑒 𝑎𝑛𝑜𝑑𝑒

Using 1 M KHCO3 as initial electrolyte

Inlet CO2 flow: 45 ml/min

• A full carbon balance helps validate our results.

• We have succeeded on  this.

• 70% of our CO2 is lost to the anode and only 30% is 
converted.

• The anode is a CO2/O2 mix, which is not good for recycling.

Out the anode



• The reactor’s performance is relatively stable over a 2 hour time frame.

Stability

• We measured potential vs. current, but we can not plot this versus RHE.



Conclusions and Future Directions

• Both near 100% faradaic efficiency and a carbon balance are neccessary to ensure proper 
analysis of high-current density reactors.

• Formate is a signficant product for Ag at high current densities.

• Using a basic electrolyte complicates the analysis, and is less beneficial than previously
thought.

Ma, M., et al., SubmittedLarrazabal, G., et al., ChemSusChem, 2019
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Including a Reference Electrode

• We put a reference electrode in through the anolyte.

• Impedance allowed us to determine membrane losses.

• Our cathodic potential is where we should expect formate
production.
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Proposed carbon balance paths via CO3
2- or HCO3

- formation

from CO2 and a subsequent CO2 production from CO3
2- or HCO3

-

2𝐶𝑂3
2− → 2𝐶𝑂2 + 𝑂2 + 4𝑒−

Anode reactions:

4𝐻𝐶𝑂3
− → 4 𝐶𝑂2 + 𝑂2 + 2𝐻2𝑂 + 4𝑒−

4𝑂𝐻− → 2𝐻2𝑂 + 𝑂2 + 4𝑒−

4

2

0

CO2/O2 ratio

4𝐶𝑂𝑂𝐻− → 4𝐻𝐶𝑂𝑂𝐻 + 𝑂2 + 4𝑒− 0

• A further analysis of anode gas flow gives 
insights into membrane crossover.

• This can give us details relating to: 
- Local pH

- Membrane conductivity


