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What are we trying to do it
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* Chemicals are 7% of EU’s greenhouse gasses emissions
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Cathodic reactions

CO,+H,0+2e > CO+20H
2CO, + 8H,0 + 12 e > C,H, + 12 OH-
2H,0+2e > 2H,+2OH

CO, + OH- > HCO,
HCO, + OH- > CO.

Literature review-

2C0,2 >
4HCO,-
OH- >

Anodic reactions

2H,0>0,+4e +4H*

CO,:0, ratio = 2

2 CO;*+4 H+ > 2C0O, +H,0
4 HCO; + 4H* > 4CO, + H,0
OH- + H* > 0CO,+H,0

Anion exchange membrane (AEM)
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Literature review- point #2
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Oscillations and analysis via synchrotron
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Analysing water
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* By using variations in background signal in g-space where there are no Bragg peaks,
we can use this as a proxy for water content.

* We can relate water content to
potential variations.
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* When looking at salts we see KHCO;, but no K,CO,

Mass transfer issues

* We see the salt deposition before water floods the cell
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KHCO,

crystals
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Oscillation hypothesis
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Salt precipitation of various cations

* Normalizing scattering between experiments shows the influence of water

* We show that Cs not only increases electric field, it’s high solubility also prevents salt
build-up.
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oy Adding fluorescence to X-ray analysis
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Operando CO, Electrolysis

Constant current density steps

XFR Cs K, peak
WAXS for mapping

Strong relation between potential and Cs*
Strong relation between concentration and Cs*

Depth [mm]

—
0.01 M CsHCO,
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0 Breaking down the Transport Mechanisms
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Micro/Macro-porous layer analysis
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* As we decrease current the Cs diffuses
back to the anode, thus all Cs decreases

* The water has no driving force to go
to the anode thus stays put.

* The microporous layer water
decreases as it diffuses to the
macroporous layer.

DTU Physics
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Ul Analyzing a CV with Cs* cations
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* Low Cs concentration gave us higher
voltages and more CO

* High Cs concentrations gave us more Cs
crossover and slightly more H,.

* We did measure liquid products ex-
synchrotron and the filled the Faradaic
efficiency gap.

DTU Physics
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Set-up

Rotating between SAXS & WAXS

every 30 seconds

Gas chromatography

Gas pr oducts

Synchrotron
X-ray beam
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e Scherrer Equation
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Stress test- Continous vs. Pulsed
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Durability Tests SAXS & WAXS —twelve
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What if we do CO electrolysis?

Fundamental

Carbon atoms ———»
1 2
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CO +H,0+2e > C,H, +2OH
2H,0+2e > 2H,+2O0OH

co,

> HCO;-
HC ;> CO,

Scale-up

> Hco,

> CO. 242

Anodic reactions

Anion exchange membrane

Cations

OH" HCOy
Li* 5.34 /
Na® 2500 1.23
K* 2156 = 3.62

Cs* 20.01

10.78

Solubility(mol/L) - 20°C Normalized

0032' to Li,CO4
0.18 1.00
2.90 6.97
7.98 20.56
8.00 61.27

Fon s
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2H,0> 0,+4e +4H*

> €O, +H,0
> CO, +H,0
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Issues with CO electrolysis

o
o
o
863.0 —
* Ir crossover is an issue, though for CO, o R — . .

electrolysis this was not an issue.
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* To prevent Ir crossover we can
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Xu. et al., Nature Catalysis, 2023
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Different gas diffusion layers & double membrane

Operando X-ray scan b
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— Varying alkalinity for CO electrolysis
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Conclusions

i

e Salt penetration through AEM’s is a huge issue
e Cesium’s high solubility makes it the optimal cation to use commerically.

* Fluorscence allows us to watch salt build-up in real time R ———
ater Limited Diffusion
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Modifications related to CO electrolysis
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Ul Analyzing a CV with Cs* cations
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= Analyzing Cs* and pulsing effects
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