

• Chemicals are 7% of EU's greenhouse gasses emissions

• If all of USA's electricity went to CO production, we would only produce 4.3 times are need of world's carbon monoxide.

DTU

What is the rate limiting step for CO (RLS)?

Nienke et al., ACS Cat., 2016

Gao et al., JACS, 2015

CO₂ to CO Rate limiting step

Different Pathways	Step ^b	Possible RLS	Proposed Rate Expression	Тур	Tafel slope (mV/ dec)	
mH^{\dagger}	A1	$CO_2 + * + e^- \rightarrow *CO_2^-$	$j_{CO} = 2Fk_{A1}^{0}a[CO_{2}]\theta^{*}exp(-\alpha fh)$	ET	118	
H from	A2	$*CO_2^- + H^+ \rightarrow *COOH$	$j_{CO} = 2Fk_{A2}{}^{0}K_{A1}{}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]exp(-fh)$	PT	59	
	A3	$*COOH + e^- \rightarrow *COOH^-$	$j_{CO} = 2Fk_{A3}^{0}K_{A2}^{0}K_{A1}^{0}a[CO_{2}]\theta^{*}a[H^{+}]exp[-(1+\alpha)fh]$	ET	39	
	A4	*COOH ⁻ + H ⁺ → *CO + H ₂ O	$j_{CO} = 2Fk_{A4}^{0}K_{A3}^{0}K_{A2}^{0}K_{A1}^{0}a[CO_{2}]\theta^{*}a^{2}[H^{+}]exp(-2fh)$	ΓT	30	
	A5	$*CO \rightarrow CO + *$	$j_{CO} = 2Fk_{A4}^{0}K_{A3}^{0}K_{A2}^{0}K_{A1}^{0}a[CO_{2}]\theta^{*}a^{2}[H^{+}]exp(-2fh)/a(H_{2}O)$	D	30	
H from	a1	$CO_2 + * + e^- \rightarrow *CO_2^-$	$j_{CO} = 2Fk_{a1}^{0}a[CO_2]\theta^*exp(-\alpha fh)$	ET	118	
$\cdot \circ \eta H$	a2	$*CO_2^- + H_2O \rightarrow *COOH + OH^-$	$j_{CO} = 2Fk_{a2}{}^{0}K_{a1}{}^{\theta}a[CO_{2}]\theta^{*}a[H_{2}O]exp(-fh)$	PT	59	
'20	a3	*COOH + $e^- \rightarrow *COOH^-$	$j_{co} = 2Fk_{a3}^{\theta}K_{a2}^{\theta}K_{a1}^{\theta}a[CO_2]\theta^*a[H^*]$ Others focus or	+hic	39	
	a4	$*COOH^- \rightarrow *CO + OH^-$	$j_{CO} = 2Fk_{a4}^{0}K_{a3}^{0}K_{a2}^{0}K_{a1}^{0}a[CO_{2}]\theta^{*}a$	i unis	З J	
	а5	$*CO \rightarrow CO + *$	$j_{CO} = 2Fk_{a5}{}^{0}K_{a4}{}^{\theta}K_{a3}{}^{\theta}K_{a2}{}^{\theta}K_{a1}{}^{\theta}a[CO_{2}]\theta^{*}a^{2}[H^{+}]a[H_{2}])exp(-2fh)/K_{W}^{2}$	D	30	
	B1	$CO_2 + * + e^- + H^+ \rightarrow *COOH$	$j_{CO} = 2Fk_{B1}^0 a[CO_2]\theta^* a[H^+]exp(-\alpha fE)$	PC T	118	
	B2	*COOH + $e^- \rightarrow *COOH^-$	$j_{CO} = 2Fk_{B2}^{0}K_{B1}^{0}\theta_{a}[CO_{2}]\theta^{*}a[H^{+}]exp[-(1+\alpha)fh]$ \M/e fo	rus or	n this 🛽	
	B3	*COOH ⁻ + H ⁺ → *CO + H ₂ O	$j_{CO} = 2Fk_{B3}^{0}K_{B2}^{0}K_{B1}^{0}a[CO_{2}]\theta^{*}a^{2}[H^{+}]exp(-2fE)$			
	B4	$*CO \rightarrow CO + *$	$j_{CO} = 2Fk_{B4}{}^{0}K_{B3}{}^{\theta}K_{B2}{}^{\theta}K_{B1}{}^{\theta}a[CO_{2}]\theta^{*}a^{2}[H^{+}]exp(-2fh)/a[H_{2}O]$	D	30	
	b1	$\begin{array}{c} \mathrm{CO}_2 + {}^* + \mathrm{e}^- + \mathrm{H}_2\mathrm{O} \rightarrow {}^*\mathrm{COOH} + \\ \mathrm{OH}^- \end{array}$	$j_{CO} = 2Fk_{b1}^{0}a[CO_2]\theta^*a[H_2O]exp(-\alpha fh)$	PCET	118	
	b2	*COOH + e^- → *COOH ⁻	$j_{CO} = 2Fk_{h2}^{0}K_{h1}^{0}\theta_{a}[CO_{2}]\theta^{*}a[H_{2}O]a[H^{+}]exp[-(1+\alpha)fh]/K_{W}$	ET	39	
	b3	$*COOH^- \rightarrow *CO + OH^-$	$j_{CO} = 2Fk_{h3}^{0}K_{h2}^{0}H_{h1}^{0}a[CO_{2}]\theta^{*}a[H_{2}O]a[H^{+}]exp(-2fh)/K_{W}$	PT	30	
	b4	$*CO \rightarrow CO + *$	$ j_{CO} = 2Fk_{b4}{}^{0}K_{b3}{}^{\theta}K_{b2}{}^{\theta}K_{b1}{}^{\theta}a[CO_{2}]\theta^{*}a[H_{2}O]a^{2}[H^{+}]exp(-2fh)/K_{W}^{2} $	D	30	
	C1	$CO_2 + * + e^- + H^+ \rightarrow *COOH$	$j_{CO} = 2Fk_{C1}^{0}a[CO_{2}]\theta^{*}a[H^{+}]exp(-\alpha fh)$	PCET	119	
	C2	*COOH + e^- + $H^+ \rightarrow$ *CO + H_2O	$j_{CO} = 2Fk_{C2} {}^{0}K_{C1} {}^{0}a[CO_{2}]\theta^{*}a^{2}[H^{+}]exp[-(1+\alpha)fh]$	PCET	39	
	C3	$*CO \rightarrow CO + *$	$j_{CO} = 2Fk_{C3}^{0}K_{C2}^{0}K_{C1}^{0}a[CO_{2}]\theta^{*}a^{2}[H^{+}]exp(-2fh)/a(H_{2}O)$	D	30	
	c1	$\begin{array}{c} \text{CO}_2 + * + \text{e}^- + \text{H}_2\text{O} \rightarrow \text{*COOH} + \\ \text{OH}^{} \end{array}$	$j_{CO} = 2Fk_{c1}^{0}a[CO_2]\theta^*a[H_2O]exp(-\alpha fh)$	PCET	119	
	c2	*COOH + $e^- \rightarrow *CO + OH^-$	$j_{CO} = 2Fk_{c2}^{0}K_{c1}^{0}a[CO_{2}]\theta^{*}a[H_{2}O]a[H^{+}]exp[-(1+\alpha)fh]/K_{W}$	PCET	39	
	c3	$*CO \rightarrow CO + *$	$j_{CO} = 2Fk_{c3}^{0}K_{c2}^{\theta}K_{c1}^{\theta}a[CO_{2}]\theta^{*}a[H_{2}O]a^{2}[H^{+}]exp(-2fh)/K_{W}^{2}$	D	30	

How do we test for rate order?

To investigate whether H⁺ is part of reaction order

- Vary the electrolyte pH
- if H⁺ is involved in the RLS, current sill vary versus potential on an absolute scale (i.e. vs. SHE)

To investigate whether H₂O is part of reaction order

- Use deuterated water (i.e D₂O versus H₂O)
- If water is involved in the RLS, current will vary versus potential on an absolute scale (i.e. vs. SHE)

B. E. Conway, Proc. Roy. Soc. London, 1964

Testing with pH variations

pH has no effect on CO production for 4 catalysts.

pH has substantial effect on H₂ production for 4 catalysts.

Deng, et. al., Nature Communications volume 13, Article number: 803 (2022)

Effects of Deutrated Water

 D_2O shows no effect on CO production for 4 catalysts.

 D_2O shows substantial effect on H_2 production for 4 catalysts.

Deng, et. al., Nature Communications volume 13, Article number: 803 (2022)

DTU

Analysis on rate limiting step for CO production

Technique	Species of Focus	Rate Order
pH Variation	H+	0
Deutrated water	H ₂ O	0

Reaction Kinetics

Only elementary step with 0,0 rate order

What is the rate limiting step (RLS)?

What is rate limiting step of CO₂ to formate?

- We never produce formate, but rather <u>postassium</u> formate
- Where does the K come from?
- KHCO₃ is produced commercially via bubbling CO₂ in KOH

 $KOH + CO_2 \rightarrow KCOOH + \frac{1}{2}O_2$

Name	Value (\$/ton)	Value (\$/Mmole)
Potassium hydroxide	1800	16
Potassium formate	1000	5

What is the rate limiting step (RLS)?

• Apply same analysis as $CO_2 \rightarrow CO$ for $CO_2 \rightarrow$ formate

Step	Possible RLS	Proposed Rate Expression	Туре	Tafel slope (mV/dec)	H⁺ order	H ₂ O order
D1	$CO_2 + * + e^- \rightarrow *CO_2^-$	$j_{HCOO^{-}} = 2Fk_{D1}^{0}a[CO_{2}]\theta^{*}exp(-\alpha fh)$	ET	118	0	0
D2	$*CO_2^- + H^+ \rightarrow *OOCH$	$j_{HCOO^{-}} = 2Fk_{D2}^{0}K_{D1}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]exp(-fh)$	PT	59	1	U
D3	*OOCH + $e^- \rightarrow *OOCH^-$	$j_{HCOO^{-}} = 2Fk_{D3}^{0}K_{D2}^{\theta}K_{D1}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]exp[-(1+\alpha)fh]$	ET	39	1	0
D4	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO^{-}} = 2Fk_{D4}^{0}K_{D3}^{0}K_{D2}^{0}K_{D1}^{0}a[CO_{2}]\theta^{*}a[H^{+}]exp(-2fh)$	PT	30	1	0
d1	$CO_2 + * + e^- \rightarrow *CO_2^-$	$j_{HCOO^-} = 2Fk_{d1}^0a[CO_2]\theta^*exp(-\alpha fh)$		118	0	0
d2	$*CO_2^- + H_2O \rightarrow *OOCH + OH^-$	$j_{HCOO^{-}} = 2Fk_{d2}^{0}K_{d1}^{0}a[CO_{2}]\theta^{*}a[H_{2}O]exp(-fh)$		59	0	1
d3	*OOCH + e ⁻ → *OCOH ⁻	$j_{HCOO^{-}} = 2Fk_{d3}{}^{0}K_{d2}{}^{\theta}K_{d1}{}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]a[H_{2}O]exp[-(1+\alpha)fh]/K_{W}$		39	1	1
d4	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO^-} = 2Fk_{d4}^{0}K_{d3}^{0}K_{d2}^{0}K_{d1}^{0}a[CO_2]\theta^*a[H^+]a[H_2O]exp[-2fh]/K_W$		30	1	1
			We focus on this			
E1	$CO_2 + * + e^- + H^+ \rightarrow *OOCH$	$j_{HCOO^{-}} = 2Fk_{E1}^{0}a[CO_{2}]\theta^{*}a[H^{+}]exp(-\alpha fh)$			1	0
E2	*00CH + e ⁻ → *00CH ⁻	$j_{HCOO^{-}} = 2Fk_{E2}^{0}K_{E1}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]exp[-(1+\alpha)fh]$	ET	39	1	0
E3	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO^{-}} = 2Fk_{E3}^{0}K_{E2}^{0}H_{E1}^{0}a[CO_{2}]\theta^{*}a[H^{+}]exp[-2fh]$	PT	30	1	0
e1	CO ₂ + * + e ⁻ + H ₂ O → *OOCH + OH ⁻ $j_{HCOO^-} = 2Fk_{e1}^{0}a[CO_2]\theta^*a[H_2O]exp(-αfh)$		PCET	118	0	1
e2	*OOCH + e ⁻ → *OOCH ⁻	$j_{HCOO^-} = 2Fk_{e2}^{0}K_{e1}^{0}a[CO_2]\theta^*a[H_2O]a[H^+]exp[-(1+\alpha)fh]/K_W$		39	1	1
e3	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO^-} = 2Fk_{e3}^{0}K_{e2}^{0}K_{e1}^{0}a[CO_2]\theta^*a[H_2O]a[H^+]exp(-2fh)/K_W$		30	1	1

Testing with pH variations

- Sn and In produce both CO and formate
- Formate does production is not a function of pH
- Testing for H₂ evolution validates that this technique can show a pH effect.

Deng, et. al., Nature Communications volume 13, Article number: 803 (2022)

Effects of Deutrated Water

- Deutrated water experiments did not show any change for formate production.
- We were worried the hydrogen in our phosphate could contaminate D₂O with a little H₂O
- Deutrated carbonate was hydrogen free and showed same results.

DTU

Analysis on rate limiting step for formate production

Technique	Species of Focus	Rate Order
pH Variation	H⁺	0
Deutrated water	H ₂ O	0

Reaction Kinetics

Step	Possible RLS	Proposed Rate Expression	Туре	Tafel slope (mV/dec)	H ⁺ order	H ₂ O order
D1	$CO_2 + * + e^- \rightarrow *CO_2^-$	$j_{HCOO^{-}} = 2Fk_{D1}^{0}a[CO_2]\theta^*exp(-\alpha fh)$	ET	118	0	0
D2	$*CO_2^- + H^+ \rightarrow *OOCH$	$j_{HCOO^{\circ}} = 2Fk_{D2}^{0}K_{D1}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]exp(-fh)$	PT	59	1	0
D3	*OOCH + e ⁻ → *OOCH ⁻	$j_{HCOO} = 2Fk_{D3} K_{D2} K_{D1} e^{\theta} a[CO_2] e^{\pi} a[H^*] exp[-(1+\alpha)fh]$	ET	39	1	0
D4	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO} = 2Fk_{D4}{}^{0}K_{D3}{}^{\theta}K_{D2}{}^{\theta}K_{D1}{}^{\theta}a[CO_{2}]\theta^{*}a[H^{+}]exp(-2fh)$	PT	30	1	0
d1	$CO_2 + * + e^- \rightarrow *CO_2^-$	$j_{HCOO^{-}} = 2Fk_{d1}^{0}a[CO_2]\theta^*exp(-\alpha fh)$	ET	118	0	0
d2	$*CO_2^- + H_2O \rightarrow *OOCH + OH^-$	$j_{HCOO} = 2Fk_{d2} K_{d1} \theta_{a} [CO_{2}] \theta^{*} a [H_{2}O] exp(-fh)$	PT	59	0	1
d3	*OOCH + e ⁻ → *OCOH ⁻	$ \int_{HCOO^-} = 2Fk_{d3}^{0}K_{d2}^{\theta}K_{d1}^{\theta}a[CO_2]\theta^*a[H^*]a[H_2O]exp[- (1+\alpha)fh]/K_M $	ET	39	1	1
d4	*00CH ⁻ → HCOO ⁻ + *	$ \begin{aligned} j_{HCOO^-} &= 2Fk_{d4}{}^{\theta}K_{d3}{}^{\theta}K_{d2}{}^{\theta}K_{d1}{}^{\theta}a[CO_2]\theta^*a[H^+]a[H_2O]exp[-2fh]/K_W \end{aligned} $	PT	30	1	1
E1	$CO_2 + * + e^- + H^+ \rightarrow *OOCH$	$i_{HCOOT} = 2Fk_{r_1}^0 a[CO_2]\theta^* a[H^+]exp(-\alpha fh)$	PCET	118	1	0
E2	*00CH + e ⁻ → *00CH ⁻	$j_{HCOOT} = 2Fk_{F2}^{0}K_{F1}^{\theta}a[CO_{2}]\theta^{*}a[H^{*}]exp[-(1+\alpha)fh]$	ET	39	1	0
E3	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO^-} = 2Fk_{E3}^{0}K_{E2}^{0}K_{E1}^{0}a[CO_2]0^{\bullet}a[H^+]exp[-2fh]$	PT	30	1	0
e1	$CO_2 + * + e^- + H_2O \rightarrow *OOCH + OH^-$	$j_{HCOO^{-}} = 2Fk_{e1}^{0}a[CO_{2}]\theta^{*}a[H_{2}O]exp(-\alpha fh)$	PCET	118	0	1
e2	*00CH + e ⁻ → *00CH ⁻	$j_{HCOO^{-}} = 2Fk_{e2}^{0}K_{e1}^{0}a[CO_{2}]\theta^{*}a[H_{2}O]a[H^{*}]exp[-(1+\alpha)fh]/K_{W}$	ET	39	1	1
e3	*00CH ⁻ → HCOO ⁻ + *	$j_{HCOO^-} = 2Fk_{e3}^{0}K_{e2}^{0}K_{e1}^{0}a[CO_2]\theta^*a[H_2O]a[H^+]exp(-2fh)/K_W$	PT	30	1	1

Only elementary step with 0,0 rate order

Local pH

- Local pH could have an effect on our results
- We measured a boundary layer of 8 μ m using ferricyanide redox couple.
- We then modelled surface pH based off the Gatrell model.

Ensuring sufficient mass transfer

- 8 μm boundary layer thickness is quiet small
- Our reactor, designed by Ezra Clark, bubbles CO₂ in a separate chamber and the reactor itself only sees a very fast flow of saturated CO₂.

 This quick mass transfer may even allow us to measure CO₂ reduction in KOH in an H–cell design

Conclusions

- Using pH & deutrated water gives us unique insight into reaction mechanisms
- pH variations and deutrated experiments are simple to do.
- We feel this provides clarity to determining rate limiting steps for CO₂ electrolysis.

Rate Limiting Step

For CO production

Acknowledgements

The VILLUM Center for the Science of Sustainable Fuels and Chemicals

THE VELUX FOUNDATIONS VILLUM FONDEN 💥 VELUX FONDEN

To learn more about our research go to

SegerResearch.com

Jinlong Gong

Wanyu Deng

Clara

Bjørt Joensen

Jensen

Sahil Garg

Asger

Moss

Yu Qiao

Degenhart Hochfilzer

lb Chorkendorff

