Photochemistry- Fundamentals and Applications

Brian Seger

9-10-2014

Energy

- Thermodynamics- Things will go to a lower energy state.
- Photochemistry- Takes photons and creates high energy states.

Objectives

- Photoabsorption- You should be able to tell how much light any photocatalyst use to do useful amount of work
- Doping- You should be able to tell the difference between an n-type and p-type material.
- Band Alignment- You should know why band alignment to a redox reaction is important.
- Applications- You should be able to know multiple applications for photocatalyst and the basic approaches to making them successful.

Breaking photocatalysis down to the fundamentals.

- A photon forces an electron to a higher energy level.
- The electron needs to get to the surface and react before it falls back down into it's initial/lower energy level.

How much energy can we get from the sun?

- The x-axis is in wavelength, but we would like this axis to be energy.
- How do we do that?
- Speed of light equation:

$$c = \lambda v$$
Wavelength Frequency

Plank-Einstein relation:

$$E = hv$$
Energy Frequency

Solar Radiation Spectrum

http://rredc.nrel.gov/solar/spectra/am1.5/

$$E(eV) = \frac{1240}{\lambda(\text{nm})}$$

- This graph shows us the energy of all the photons coming from the sun.
- Important note:
 - The unit is 'electron-Volt', which is a unit of energy.
 - 'Volt' is a unit of potential.
 - 1 eV is the amount of energy it takes 1 electron to change its potential by 1 volt.

Molecular Photocatalysts

Molecular photocatalysts have distinct energy levels.

This photon energy needs to match this energy gap.

Molecular photocatalyst only absorb efficiently at one wavelength.

Semiconductor Photocatalysts

Semiconductors have bands rather than distinct levels.

This photon energy needs to roughly this energy gap.

Semiconductors can absorb a much broader range of light.

Photochemistry vs. Photoelectrochemistry

- Photochemistry- having both the oxidation and reduction reaction take place on the same material
- Photoelectrochemistry- only having the photoabsorber doing oxidation (or reduction) and the electron (or hole) then goes through a wire to a counter electrode to do the other reaction

<u>Photochemistry</u>

<u>Photoelectrochemistry</u>

Analysis

- It's hard to analyze what is going on in photochemistry.
- Analysis techniques include:
 - Measuring the products
 - Spectroscopy (normally expensive equipment)
- Photoelectrochemistry is much easier to analyze
- Common photo-electrochemcial techniques include.
 - Standard electrochemical techniques- CV, CA...
 - Incident Photon to Current Efficiency (IPCE)
 - Faradaic Efficiency (electron to chemical product efficiency)
 - Impedance Techniques

Semiconductor Fundamentals

- Valence band are filled energy states.
- Conduction bands are empty states.
- The Fermi Level is electronic version of chemical potential.
- Undoped materials have a Fermi level ½ between VB and CB.
- p-type semiconductors have a Fermi level near the VB.
- n-type semiconductors have a Fermi level near the CB.

PEC Fundamentals

- PEC is all about the semiconductor-electrolyte interface.
- Much of this work is purely semiconductor electrochemistry.
- Initially I will describe dark conditions.

PEC Fundamentals

- The electrolytes charge dominates the chemical potential of the system.
- The Fermi level matches the chemical potential of the solution.
- The VB and CB should move linearly with the Fermi level.
- The 1st few layers of water bind strongly to the semiconductor.
- There are so few carriers, the semiconductor can't balance this charging.
- This results in charging at the surface.

PEC Fundamentals

- The semiconductor doesn't have many electronic states to conduct.
- Thus the charging must be dissipated over some distance.
- This dissipation results in band bending.
- The higher the dopant density, the smaller depletion width.
- Metals basically have no band bending.

Advantages of Band Bending

- Band bending is great for photochemistry!!
- Electrons love to go down hill, and holes (i.e. anti-electrons) like to go uphill.
- Thus band bending separates electrons and hole.
- Therefore they can not recombine.
- The holes go to the surface to react.
- The electrons go to the bulk/electrode.

The Electrode

- Rather than have the electrolyte produce band bending, we can have an electrode do this.
- The electrode sets the Fermi level, but does not effect the solution chemical potential.
- This produces a nonequilibrium state.
- This also increases our band bending.
- Increased band bending means better electron-hole separation.

n-type versus p-type

- n-type will almost always force holes to the surface.
- Holes oxidize, thus n-type electrode do oxidation reactions.
- p-type will almost always force electrons to the surface.
- Electrons reduce, thus p-type electrode do reduction reactions.

p-type Semiconductor

n-type Semiconductor

Counter Electrode

- If the semiconductor does either an oxidative (or reductive) reaction, where is the corresponding reductive (or oxidation) reaction?
- This takes place on the metallic counter electrode (in the dark).
- The transfer of e⁻ or h⁺ through the wire can be measured as current.

What reactions to do?

- p-type reduction reactions:
 - $H_2O + e^- \rightarrow H_2 + OH^-$
 - $CO_2 + e^- \rightarrow C_x H_v O_z$ (hydrocarbons) + OH^-
 - $O_2 + e^- \rightarrow O_2^*$ Superoxide/ O_2 radical oxidizing agent
 - $Ag^+Cl^- + e^- \longrightarrow Ag + Cl^- \longleftarrow$ This is how photographic films are made.
- n-type oxidation reactions:
 - $OH^- + h^+ \longrightarrow H_2O + O_2$ hole
 - Carbon based pollutants + $h^+ \rightarrow CO_2 + H^+$
 - $Cl^- + h^+ \rightarrow Cl_2$
- Overall reactions (using counter electrode or 2 photoabsorbers):
 - $H_2O \rightarrow H_2 + O_2$
 - Carbon based pollutants \rightarrow CO₂ + H₂O + others (This is not well defined)
 - $CO_2 + H_2O \rightarrow C_xH_yO_z$ (hydrocarbons) + O_2

Issues with Band Levels

- For a p-type material, the electron will go to the electrolyte at an potential no higher than the conduction band.
- The conduction band is pinned at the semiconductor/water interface.
- Thus photo-electrons can only reduce species, which can get reduced at or below the conduction band.
- In the case to the right, A can not be reduced, whereas B can be reduced.
- Even if we bias the electrode to increase band-bending, we still can't get the electron to reduce A.

Trick with Band Positions

- The band levels of oxides in water can be modified.
- Changes in pH, modify the oxide surface.
- For all oxides the valence band (and conduction band) vary via the following equation.

$$VB = VB(@pH = 0) + \frac{RT}{nF} \times pH$$
59 mV

- The VB or CB position are always relative to some reference such as Ag/AgCl, SCE, or normal hydrogen electrode.
- The general rule is every increase in pH gives you 59 mV of reducing power.
- However the redox potential of any reaction that has an H⁺ as a reactant needs 59 mV/pH more of reducing power.

Band Positions and Redox Reactions

- Below are a list of band positions and redox reactions.
- For the semiconductors, more negative means more reducing power.
 Reduction Reactions

<u>Semiconductor</u>

Material	VB	СВ
Si	0.6	-0.5
TiO ₂	3.0	-0.1
WO ₃	2.8	0.2
CdS	1.75	-0.5
GaP	1.25	-1.0
Cu ₂ O	1.0	-1.0
Fe ₂ O ₃	2.4	0.3

Reaction	Potential
$H^+ + e^- \rightarrow H_2$	-0.0
$CO_2 + e^- + H_2O \implies CH_4 + OH^-$	0.1
$CO_2 + e^- + H_2O \implies CO + OH^-$	-0.14
$O_2 + e^- \rightarrow O_2^*$	-0.5

Oxidation Reactions

Reaction	Potential
$H_2O + h^+ \rightarrow O_2 + H^+$	1.23
$Cl^- + h^+ \longrightarrow Cl_2$	1.4
$HCOOH + h^+ \rightarrow CO_2 + H_2O$	0.25

All potentials are vs. NHE

All potentials are vs. NHE

More Issues with Semiconductors

- Just because an electron is in the conduction band, doesn't mean that is the chemical potential of the electron.
- Just because an electron is in the conduction band, doesn't mean that is the chemical potential of the electron.
- The photo-electron has a quasi Fermi-level, which is somewhere below the conduction band.
- The quasi-Fermi level is based on light intensity and the ability to efficiently separate electrons and holes.
- Ole Hansen will discuss this in detail when he presents.

Even More Issues with Semiconductors

- Issue #1- the electron quasi-Fermi level needs to have a higher energy than the redox couple to reduce it.
- I know of no pure way to determine where your quasi-Fermi level is located at.
- If you apply bias, you can increase band bending, which may help increase the Quasi-Fermi level.
- Issue #2- If the redox reaction isn't easy, you will also have catalytic overpotentials.
- If overpotential is too large, you still won't be able to have reduction.

Photoabsorber + Catalyst

- Unless you are extremely lucky, the photoabsorber will not be the best electro-catalyst for your reaction.
- Thus you need a co-catalyst.
- At this point you are doing coupled photo-absorption and electrochemistry.
- Ifan Stephens explained the electrochemistry in a previous lecture.
- If all this becomes electrochemistry, why do we do photoelectrochemistry?

Photovoltage

- PEC lets us do electrochemistry with less/no applied bias.
- The electrode potential matches the Fermi level of the hole quasi-Fermi level.
- Thus the difference between the hole quasi-Fermi level and electron quasi-Fermi level is the extra voltage the PEC gives us.

Results

 Below is a cyclic voltammogram of various electrodes for the H⁺/H₂ reaction.

Losses at the Counter Electrode

- Since the photocatalyst has catalytic losses the counter electrode will also have catalytic losses.
- To eliminate counter electrode losses, we use a 3-electrode cell.
- In a 3 electrode cell the voltage is measured between the photocatalyst and reference electrode.
- The current still runs between the photocatalyst and counter.
- In a 3 electrode cell, the system provides extra voltage to the counter electrode to mitigate the catalytic losses.

Applications of Photochemistry and Photoelectrochemistry

- Water Splitting
- CO₂ Reduction
- Pollutant Degradation
- Dye-Sensitized Solar Cells
- Perovskite Solar Cells
- Sensors

Water Splitting

- $\bullet \quad H_2O \to H_2 + O_2$
- The main idea behind this reaction is to produce hydrogen, which can replace fossil fuels as an energy source.
- Water is our reactant, and oxygen is a byproduct.
- Thermodynamically this reaction needs 1.2 eV.
- Realistically you need about 2.3 eV.

Water Splitting

- H₂ has to compete with fossil fuels, which are extremely cheap.
- There are 2 approaches:
 - Do it really cheap, and then try to bring up efficiencies.
 - Do it really efficient and then bring down costs.
- I will discuss the high efficiency first approach because that is more of a physics way of doing it.
- To optimize water splitting you need 2 photocatalysts
 - 1 absorbs the blue light
 - 1 absorbs the red light
- A 2 photocatalyst design gives you just enough voltage to split water.

Energy Levels of Our Processes

- The photoanode will oxidize water to oxygen while the silicon will reduce the protons to hydrogen.
- The Fermi levels of both photoabsorbers must equilibrate.
- Catalysts will be needed to improve reaction kinetics.

Walter et al., Chem Review, 2010

1-Photon Overall Water Splitting

- This is inherently a cheap method because you can use nanoparticles dispersed in water rather than aligned films.
- The problem is: *Should the photocatalyst be p-type or n-type?*
- There is no good answer to this.
- If it is n-type, holes will easily go to the surface, but electrons can't.
- If it is n-type, holes will easily go to the surface, but electrons can't.

1-Photon Overall Water Splitting

- Approaches to resolving the band bending issue.
 - Don't dope the material, thus mitigating bandbending.
 - Creating a non-doped semiconductor is hard.
 - Have small particles.
 - Very small particles prevent band bending from building up (< 50 nm)
 - Have a co-catalyst create an ohmic contact.
 - Forming an ohmic contact prevents band bending at localized spots.

Water Splitting- Recombination

- Electrons and holes can recombine to waste energy.
- In a 1 photon device it is very easy for the H₂ and O₂ to recombine to form water.
- Also the hole could oxidize H₂ instead of H₂O. And the electron could reduce O₂ rather than H⁺.
- In a 2-photon/film these back reactions are less prevalent.

CO₂ Reduction

- CO₂ reduction to hydrocarbons is not easy electrochemically, thus it is even harder for PEC.
- If we simply look at CO₂ to methane.

Overall Reaction: $CO_2 + H_2O \rightarrow CH_4 + O_2$ Same as Anode Reaction: $OH^- + h^+ \rightarrow H_2O + O_2 \leftarrow$ Water splitting Cathode Reaction: $CO_2 + H_2O + e^- \rightarrow CH_4 + OH^-$ 8 electron transfer, thus hard reaction

 The biggest impediment to CO₂ reduction is this cathode side reaction.

$$H_2$$
 evolution: $H_2O + e^- \rightarrow H_2 + OH^-$

Most catalysts would rather do this reaction than CO₂ reduction.

CO₂ Reduction-Recombination

- Just like water splitting the hydrocarbons from CO₂ reduction, can be oxidized back to CO₂.
- This recombination will happen more for liquid CO₂ reduction products rather than gaseous CO₂ reduction products.

We can take advantage of this troublesome issue though.

Pollutant Removal

- Often there is organic pollutants that need to be removed for drinking or sanitation purposes.
- Most of these are very easy to oxidize with n-type semiconductors.
- Oxides are especially nice because they can produce OH radicals from water.
- OH radicals are highly oxidative and can migrate into solution.
- Thus either the photo-hole or the radical can oxidize the pollutant.

Pollutant Removal

- While the hole oxidizes, what does the electron do?
- If there is oxygen in the system, which there always is, the electron can reduce the oxygen to form a superoxide (or oxygen radical.)
- Oxides are especially nice because they can produce OH radicals from water.

Pollutant Removal

- Here is a more detailed mechanism for electron and hole degradation reactions for TiO₂
- Radicals react very fast, thus it is hard to analyze mechanisms.

Dye Sensitized Solar Cell (DSSC)

Michael Gratzel popularized this approach to solar cells in 1991.

Dye Sensitized Solar Cell (DSSC)

The key to success in a nanoporous TiO₂.

Dye Sensitized Solar Cell- Results

- In 1997 the record was 10% and in 2014 it is 11.9%.
- The biggest issue is the liquid electrolyte leaking/evaporating over time.
- The major focus is on finding good hole conductors to replace iodide.
- The annoying thing is a change in dye many times means a new hole conductor is needed.
- To the right is state of the art performing DSSC

Figure 3. Current—voltage characteristics measured in the dark (red line) and under simulated AM 1.5 solar illumination at 100 (blue line), 50 (green line), and 10 (black line) mW/cm² for a solid-state DSC using **2** as the molecular sensitizer and *spiro*-MeOTAD as the hole transporting material. The inset shows the photocurrent action spectrum of the same cell.

Perovskite Solar Cell

- These were initially an off-shoot of dye sensitized solar cells.
- The only difference was PbCH₂NH₃I₃ replaced the dye.
- A hole conductor named 'SPIRO' is now used for DSSC and Perovskites instead of Iodide because it is more efficient.

Perovskite Solar Cell

- Unlike DSSC, these do not need porous TiO₂.
- Electrons can hop from one perovskite until cell to another very efficiently.
- Perovskites naturally are undoped (i.e neither n-type nor ptype).

<u>Efficiencie</u>s

2006 - 2.2 %

2009 - 3.8 %

Nov. 2012 - 10.9 %

July 2013 - 12.9 %

July 2014 - 17.9 % *

Figure 3 | **Solar cell performance.** Current-density/voltage curves of the best-performing solution-processed (blue lines, triangles) and vapour-deposited (red lines, circles) planar heterojunction perovskite solar cells measured under simulated AM1.5 sunlight of $101\,\mathrm{mW\,cm^{-2}}$ irradiance (solid lines) and in the dark (dashed lines). The curves are for the best-performing cells measured and their reproducibility is shown in Table 1.

^{*} Unpublished data

Solar Cell Efficiencies

NREL in the US tests and verifies all record solar cells. They
frequently update the graph showing the best efficiencies

Greg Wilson and Keith Emery - National Renewable Energy Laboratory (NREL),

Sensors

- One approach is just to monitor pollutants in water.
- In this case you use photocatalysts to oxidize a small fraction of the pollutants.
- To oxidize the pollutants the photocatalyst must use oxygen.
- You then use a detector to monitor changes in oxygen in the water.
- A decrease in O₂ means an increase in pollutants.
- Once calibrated you can measure pollutants in solution via oxygen in solution.

Sensors

- A non-photochemical way to use semiconductors is to use them as an electrical sensor.
- Hydrogen is known to intercalate/ react with TiO₂.
- Hydrogen can change the resistivity of TiO₂ by orders of magnitude.
- Thus this is a phenomenal H₂ sensor.

Fig. 43. Electrical resistance of 22 nm diameter 360 nm long TiO₂ nanotube array when exposed to different hydrogen concentrations at room temperature. The nanotube response is completely reversible without hysteresis or drift.

Mor et al., Sol. Ener. Mat. & Sol. Cells, 2006

Summary

Fundamentally

- We kind of understand the general concepts such as bandbending, quasi-Fermi levels and redox reactions.
- We do not understand defect sites at the interface, and cocatalyst-semiconductor interactions.

Applications

- The 2 main applications are energy production and contaminant removal.
- For energy production we need to increase efficiency and durability, while decreasing costs.
- For contamination removal, we need to understand degradation mechanisms and by-products.