

Fundamental Studies on CO₂ and CO Reduction

SurfCat Summer School August 9, 2018

Brian Seger

Villum Center for Sustainability (VSustain) Department of Physics. DTU

Why an Electrochemical Approach

Source: IRENA Renewable Cost Database.

Note: The diameter of the circle represents the size of the project, with its centre the value for the cost of each project on the Y axis. The thick lines are the global weighted average LCOE value for plants commissioned in each year. Real weighted average cost of capital is 7.5% for OECD countries and China and 10% for the rest of the world. The band represents the fossil fuel-fired power generation cost range.

Chemicals Before Fuels

 CO₂ reduction to chemicals starts with 1 carbon, whereas fossil fuels break down 10-20 carbon materials.

Material	# of e⁻	(\$/ton)	(\$/MC)	World Prod. (megaton)
Hydrogen	2	1000	0.010	60
Carbon Monoxide	2	743	0.110	3.8
Formic Acid	2	650	0.150	0.8
Formaldehyde	4	530	0.041	10
Methanol	6	496	0.027	160
Methane	8	150	0.003	4000
Acetic Acid	8	460	0.036	12
Ethylene Glycol	10	1000	0.065	7
Acetone	16	700	0.064	6
Ethanol	12	600	0.024	110
Ethylene	12	1050	0.025	180

H₂- <u>https://www.hydrogen.energy.gov/</u> CO- <u>https://www.openpr.com/</u> COOH- A. A. N. Afshar, Chemical Profile: Formic Acid *TranTech Consultants, Inc.*, (2014). CHOOH - <u>https://www.icis.com</u> CH₃OH <u>Methanex.com</u> CH₄- EIA (<u>www.eia.gov</u>), Acetic Acid- <u>Prnewswire.com/</u>, Ethylene Glycol- <u>https://www.intratec.us/</u>, <u>Ullmann's Encyc. of Ind. Chem</u>. Acetone- <u>Platts</u>, <u>Ullmann's Encyc. of Ind. Chem</u>, Ethanol- <u>Nasdaq</u>, <u>http://www.ethanolrfa.org</u> Ethylene- <u>Platts</u>

• Technoeconomic analysis: Jouny et. al, Ind. Eng. Chem. Res., 2018, 57 (6), pp 2165–2177

Talk Outline

• All CO₂ reduction intermediates go through CO (except formate).

- A 2-step process allows us more flexibility in catalysis and better fundamental understanding.
- Thus this talk has 2 parts:

Part 1: Fundamental studies on Au for CO₂ to CO

Part 2: Syncrotron studies of CO reduction on Cu

CO₂ to CO Catalyst Electrocatalysis

 Applied:
 goal get highest current possible at a given potential

 catalyst
 high surface area, 3-dimensional

 But report results in

Fundamental:goal-determine intrinsic catalytic activitycatalystwell defined, low surface area

mA/cm² for some reason

Single Crystal CO₂ to CO

H₂ evolution

42

-0.7

E_{RHE} /V

-0.8

0

Ø

-0.6

- Highly undercoordinated Au sites have the highest activity.
- H_2 evolution is about same on all Au catalysts.
- Ag is not as good as Au, but suppresses H₂ better.

pcAu)

(100)

-0.7

E_{RHE} /V

111)

·b...

-0.6

*CO*² *evolution*

10 -

j_{co} /mAcm⁻²_{Au}

0.1 -

-0.8

H₂ issues

- The Au<111> and Au<100> has major H₂ issues.
- Au is a much better H₂ catalyst than Ag.

Pb Underpotential Deposition

* Hamelin, A. J Electroanal Chem Interfacial Electrochem 165, 167–180 (1984).

Pb Deposition		Pb Stripping		Double layer
(cathodic)		(anodic)		capacitance
Q	Rf	Q	Rf	С
(µCcm ⁻²)	(/)	(µCcm ⁻²)	(/)	(µFcm⁻²)
295	1	266	1	20 ± 5
292	1	280	1	20 ± 5
293	1	270	1	25 ± 5
258	1	210	1	30 ± 5
492	1.7	435	1.6*	60 ± 5
	Pb Dep (cath) Q (μCcm ⁻²) 295 292 293 258 492	Pb Deposition (cathodic) Q Rf Q Rf (μCcm ⁻²) (/) 295 1 292 1 293 1 258 1 492 1.7	Pb Depoint Pb Strip (cat) (an or constraints) Q Rf Q (μCcm^{-2}) (/) ($\mu Ccm^{-2})$ 295 1 266 292 1 280 293 1 270 258 1 210 492 1.7 435	Pb Dep>tion (cath/dimensional cath/dimensional cat

Calculating surface area for Au

UPD for Au

Partial Pb UPD – Polycrystalline Au

- We partially UPD lead onto Au and measure activity.
- We had Pb coverage of:

A: 20% Pb coverage, about half undercoordinated peakB: 47% Pb coveage, all undercoodinated peakC: 100% Pb coverage (negligible current)

All experiments done at -0.7 V vs, RHE in 0.1M KHCO₃

Issues with Single Crystals

- Single crystals are very flat in the middle, but at the edges they tend to curve slightly, and have edge sites.
- Inactive facets (<100> & <111>) could be dominated by edge sites, thus hiding the intrinsic activity.

Partial Pb UPD –Au <111>

• We had Pb coverage of:

A: 4% Pb coverage, about half undercoordinated peak B: 15% Pb coveage, all undercoodinated peak

Part 2

Syncrotron Studies on Cu

DTU

Erlend **Betheussen**

Søren Scott

Stanford

John Lin

Alan Landers

SLAC

Ryan Davis Apurva

Jeff

Beeman

Thomas Maagard

Thomas Hogg

Christopher Hahn

Drew Higgins

Thomas Jaramillo

Walter

Drisdell

Mehta

Fundamental Studies on CO

- Our goal is to understand Cu's *in-situ* structure.
- Synctron measurements at SLAC was needed to do this.

http://henke.lbl.gov/optical_constants/atten2.html

- Cu (111) has a peak at 20° and Cu₂O (111) at 17°.
- For sufficient signal we operated at α =0.15°.

Reduction of Native Oxide in CO

 We set the detector at a given angle range and did a linear sweep voltammogram.

Comparing CO Reduction in Ar and CO

• We have an earlier reduction onset in Ar, but the same XRD change w.r.t. potential.

Cu reduction in 0.1M KOH in argon. Scan rate = 10 mV/s

Variations in Faceting

- We took XRD scans before and after the reduction to allow us to see all XRD peaks.
- Reduction in CO increased our Cu
 <200> peaks.
- Variation in XRD angle/depth shows this is just a surface effect.

Interesting Mistake

- Nickel carbonyl is a common contaminant in CO.
- The actual performance of this sample is ineffective due to Ni producing H₂.
- We believe the variations is due to stress within the Ni(OH)₂.

Acknowledgements

- I would like to acknowledge both the funding agencies and the DTU CO₂ reduction group.

Stefano Mezzavilla

Søren n Scott

Thomas Hogg

European Commission

THE VELUX FOUNDATIONS

Thomas Maagard

as Gaston rd Larrazabal

on Sebastian

Horch

lb Chorkendorff

To learn more about our research go to SegerResearch.com

H₂ evolution on Au single crystals

0.1

0.0

-0.1

> -0.2

-0.3 ቿ -0.4 ш -0.5

-0.6

-0.7

armillo et al

90 mV/dec

Science 317, 100-102 (2007).

(100) (111)

- H₂ evolution on Au is minor function of crystal facet.
- Au <211> is 3 times larger than Au <100>, but 20 time larger in CO evolution.

Does oxidized Cu Play a Role in CO Reduction?

Time (s)

Oxide-derived Cu 1 Oxide-derived Cu 2 Cu nanoparticles Lee et. al, Nature, 2014, 508, 504-507

XANES Studies

Mistry et. al, Nat. Comm., 2016, 7, 12123

Eilert et. al, JPC-L, 2017, 8, 285-290

Mandal et. al, ACS Appl. Mat Int., 2018, 10, 8574-8584

Formate on Au?

- The electrodes were taken to -1.0V vs RHE to look for formate.
- HPLC & NMR was used for detection.
- We also looked for methanol, but did not see anything.

Setup Schematic

The Team

• Below is the CO₂ reduction team at DTU.

Stefano Mezzavilla

Erlend Betheussen

Søren Scott

Thomas Hogg

Thomas Maagard

Gaston Larrazabal

Sebastian Horch

lb Chorkendorff

The Team

• There are many people that work on our projects, but below are the major contributors.

Stefano Er Mezzavilla Beth

DTU

Betheussen

Thomas Maagard

Gaston Larrazabal

Scott

Ib Chorkendorff

Thomas

Walter Drisdell

Jeff Beeman

