Results-Temperature

Figure 9.2 Annual-mean surface (2 m) air temperature (°C) for the period 1980–2005. (a) Multi-model (ensemble) mean constructed with one realization of all available models used in the CMIP5 historical experiment. (b) Multi-model-mean bias as the difference between the CMIP5 multi-model mean and the climatology from ECMWF reanalysis of the global atmosphere and surface conditions (ERA)-Interim (Dee et al., 2011); see Table 9.3. (c) Mean absolute model error with respect to the climatology from ERA-Interim. (d) Mean inconsistency between ERA-Interim, ERA 40-year reanalysis (ERA40) and Japanese 25-year ReAnalysis (JRA-25) products as the mean of the absolute pairwise differences between those fields for their common period (1979–2001).

Taken from IPCC report (AR5, Chapter 9)

Photovoltaics

Lecture - Learning Objectives

At the end of this lecture you should be able to:

- Understand light absorption and how it applies to solar cells.
- Explain why we can not get 100% efficiency from our solar cells and denote where the losses are coming from.
- Understand what parameters makes a material a good solar cell.
- Understand where practical losses are coming from in solar cells.

How much energy can we get ?

- Comparison of renewable energy sources:
 - Geothermal: 0.3-2 TW
 - Hydro Power: 3-4 TW
 - Biomass: 2-6 TW
 - Wind Power: 25-70 TW
 - Solar Power: 123,000 TW
- Solar will always provide us with enough energy to power the planet.
- The real question is can we do it cheap enough to be economically viable.

Ambitious PV system goals

Ambition: Cost effective grid power from PVRequirements:Utility system costs: $C_s \sim 1$ %/WReliability:~ 30 yrsEfficiency: $\eta \geq 25\%$ (!)Materials: Earth abundant, preferably non-toxic, recyclableModule cost:~ 0.5 %/WCell cost:~ 0.25 %/WCurrently ~ 1.7 %/WLeffordable energy starses

+ affordable energy storage

PV module PV sy 10333 Physics of Sustainable Energy

PV system (Nellis Air Base, US)

27/09/2013

PV learning curve

Solar PV Experience Curves:

Leading Technologies: Crystalline Silicon (c-Si), Cadmium Telluride (CdTe) Sources: (CdTe) First Solar Earnings Presentation, SEC filings; (c-Si) Navigant, Bloomberg NEF, NREL internal cost models

Solar Cell Costs

- They have dropped ridiculously in the last 8 years.
- The top ~10 biggest companies for Si solar cells all are from China.
- National grids are getting solar cells pricing at 0.03 \$/kWh

Reverse Auctions

- Countries say they want a given amount of renewable electricity (with conditions) and then the lowest bid gets the job.
- This has been an absolute success. Prices have dropped incredibly due to this.

Latin America & Caribbean Tendered Projects by Bid Price and Capacity, 2013-2017

Source: GTM Research Global Solar Demand Monitor Q4 2017

Reverse Auctions

Solar prices are dropping prices across all countries

http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf

Physics of Photovoltaics

- Why is it thermodynamically impossible to get 100% efficiency photovoltaics?
- What is the maximum efficiency we can get?
- How do we get that efficiency?
- Can we make it cheap?

Solar cells explained in 2 minutes

• From a first order theory we should be able to get power according to the voltage and current

Visible Light

- While typically the plots are irradiance vs. wavelength, irradiance vs. photon energy can also be useful.
- We can convert these graphs using the following equation:

$$E(eV) = \frac{1240}{\lambda(\text{nm})}$$

Relating voltage to current

• We want power from our solar cell and this is simply: $\mathbf{P} = V \times j$

where V is voltage and j is current density.

 Increasing our current decreases our voltage, leading to a j-V curve as shown below

$$\mathsf{FF} = \frac{J_{mp}V_{mp}}{J_{SC}V_{OC}}$$

 $Power_{Max} = FF \times J_{SC}V_{OC}$

 V_{OC} = Open circuit voltage V_{mp} = Max power voltage I_{sc} = Short circuit current I_{mp} = Max power current

Photoabsorption from Molecules

• Molecular photocatalysts have distinct energy levels.

Molecular photocatalyst only absorb efficiently at one wavelength.

Size of photoabsorber molecule

- As molecules gets larger, they transition from molecular orbitals to groups of orbitals.
- For large particles, these simply become bands
- Most photoabsorbers are either:
 - molecular photocatalysts (mw < 300 g/mol)
 - semiconductors (mw > 10,000 g/mol)
- It is possible to make some intermediate range catalysts due to quantization.

Figure 6. MO model for particle growth for *N* monomeric units. The spacing of the energy levels (i.e., density states) varies among systems.

Hoffmann, Chem. Rev. 1995

Semiconductor photocatalysts

• Semiconductors have bands rather than distinct levels

This photon energy needs to roughly match this energy gap.

- The energy difference between the valence and conduction band is called the band gap (E_g).
- Semiconductors can absorb a much broader range of light.

Fundamental issue with photoabsorption

- A photon with an energy higher than the bandgap will produce an electron in a very high energy level in the conduction band.
- This electron will immediately transfer to the lowest level in the conduction band.
- Thus the excess energy from the photon is lost.

Efficiency

- The input is simply an integration of the photons multiplied by their energy.
- P_{out} is the amount of power from your solar cell.

n(E)= # of electrons at a given energy

$$Efficiency = \frac{P_{out}}{P_{in}}$$
$$P_{in} = \int_{0}^{E} n(E)dE$$
$$P_{out} = iV$$

Maximum efficiency- 1 photon cell

• From a first order theory we should be able to get power according to the voltage and current

volts 1.0 4.0 [%] 30 **Detailed Balance** Limit ן ק 20 Best experimental efficiency for 10 Si-cells Semi-Empirical Limit °ò 2 6 $X_g = V_g/kT$ Xa

FIG. 1. Comparison of the "semiempirical limit" of efficiency of solar cells with the "detailed balance limit," derived in this paper. + represents the "best experiment efficiency to date" for silicon cells. (See footnote 6.)

Shockley and Queisser, J. Appl. Phys. 1961

What efficiency loss aren't we including?

Maximum efficiency- Shockley-Queisser

Answer- Thermodynamics. We have losses due to both the 1st and 2nd law of thermodynamics.

70

<u>Shockley-Queisser</u> did a much more thorough analysis to determine maximum efficiency balance.

Cummulative photocurrent

70

Our 1st order approximation of maximum efficiency

FIG. 1. Comparison of the "semiempirical limit" of efficiency of solar cells with the "detailed balance limit," derived in this paper. + represents the "best experiment efficiency to date" for silicon cells. (See footnote 6.)

Shockley and Queisser, J. Appl. Phys. 1961

Blackbody radiation from Sun

• From blackbody radiation, we have

$$I_E dE = \frac{2\pi v^3}{c^2} \frac{1}{\left(e^{hv}/_{kT} - 1\right)} dE \qquad E = hv \qquad I_E = \frac{2\pi}{h^3 c^2} \frac{E^3}{\left(e^{hv}/_{kT} - 1\right)}$$

• **Realize** $\frac{I_E}{E} = \# of Photons/s \equiv \beta$

$$\beta_{sun}(E)dE = \frac{2\pi}{h^3 c^2} \left(\frac{E^2}{exp^{E}/k_B T - 1} \right) dE$$

- We do need to compensate though for the fact that we are a given distance away from the sun.
- This can be done by noting the Sun-Earth solid angle

Including solid angle into radiation

• The black-body radiation is a function of angle:

Blackbody radiation from solar cells

• Our solar cells can blackbody radiate just like the sun

$$b_{emit}(E,\Delta\mu) = \frac{2F_a}{h^3 c^2} \left(\frac{E^2}{exp^{(E-\Delta\mu)}/k_B T} - 1\right)$$

- The emission is a function of potential (i.e. voltage) and temperature (298 K).
- The higher the voltage the more emitted radiation
- The F_a term is 2π if we emit in all directions, but will be π if we have a reflector on the backside of our solar cell.
- We don't want our solar cell to emit radiation, we want to absorb it.

Loss due to emission

 Our loss in terms of photons / current can be denoted as followed:

 $J_{emission} = qb_{emit}\varepsilon$

- Where ε is our emission coefficient
- We could also include a reflection term (1-R) to J_{emission} if we wanted to assume that some of the emitted photons can't get out.

Concept Check

- Which will be larger:
- a) absorption coefficient
- b) emission coefficient
- c) they will be the same
- d) it is material dependent

Photocurrent during irradiation

 During irradiation, we have a net 'photocurrent' that is our absorption from the sun plus absorption from ambient (b_{amb}) minus our emission from our device.

$$J_{net} = q(1 - R(E)) \times (b_{sun}(E) + b_{amb}(E) - b_{emit}(E, \Delta \mu))$$

where R stands for reflection and q is an elementary charge. This assumes 100% above band gap photon absorption

- b_{amb} is ambient radiation from the earth (i.e. dark radiation)
- Lets define a short circuit current (assuming 100% absorption and collection of charge):
- At short circuit $\Delta \mu$ = 0, and the last 2 terms cancel each other out

$$J_{sc} = q \int_{E_G}^{\infty} (1 - R(E)) b_{sun} dE$$

Ideal Diode Equation

• Lets integrate the entire J_{net} equation over all energies:

$$J_{net} = q \int_{E_G}^{\infty} (1 - R(E)) \times (b_{sun}(E) + b_{amb}(E) - b_{emit}(E, \Delta \mu))$$

$$J_{net} = J_{sc} - J_0 \left[exp\left(\frac{qV}{kT}\right) - 1 \right]$$

where J_o is defined as:

Emission angle (
$$\pi$$
 if you have a perfect back reflector)

$$\int_{0}^{\sqrt{2\pi kT}} \frac{\sqrt{2\pi kT}}{h^{3}c^{2}} \times (E_{g}^{2} + 2kTE_{g} + (kT)^{2}) \times \exp\left(\frac{-E_{g}}{kT}\right)$$
Index of refraction issues

Diode Equation + Device Losses

$$J_{net} = J_{sc} - J_0 \left[exp\left(\frac{qV}{kT}\right) - 1 \right]$$

- Series Resistance (R_S) are losses due to any ohmic resistance in the system. We want low series resistance
 - This can be external (resistance in wire to solar cell) or internal (resistance within the semiconductor)
- Shunt Resistance (R_{SH}) are losses due to internal short circuiting of the cell. Thus we want high shunt resistance
- Including shunt and series into our diode equation we get:

$$J_{net} = J_{sc} - J_0 \left[exp\left(\frac{q(V+J_{net}R_s)}{kT}\right) - 1 \right] + \frac{q(V+J_{net}R_s)}{R_{SH}}$$

Shunt & Series Losses

• The circuit for a shunt and series loss solar cell looks as followed:

Effects of Shunt Losses

Practical Issues

• Getting electrons out without blocking light can be an annoying issue

• Conductive metal (copper or silver)

Semiconductors are conductive enough to get out of the semiconductor (10 μ m), but not to a conductive contact (10 mm).

- Transparent oxides such as indium tin oxide (ITO) and fluorine doped tin oxide (FTO) were put on top of solar cells to allow good transparency and OK conductivity.
- Both ITO and FTO are slightly expensive.

Break

Semiconductor Fundamentals- quick review

- Valence band (VB) are filled energy states, conduction bands (CB) are empty states.
- The Fermi level is the chemical potential of the system.
- Semiconductor have a Fermi Level where there are no electronic states
- Thus a certain percentage of electrons must be jump into the conduction band to achieve thermodynamic equilibrium

K-space

• K-Space is basically inverse wavelength or momentum space

Momentum

Direct versus Indirect Semiconductors

Direct Band Gap

 $\alpha(h\nu) \propto A \times (E_{Photon} - E_G)^{0.5}$

Indirect Band Gap $\alpha(h\nu) \propto A \times (E_{Photon} - E_G)^2$

 $\boldsymbol{\alpha}$ is the absorption coefficient

Silicon's Band Structure

- Silicon is an indirect band gap material.
- Indirect bandgaps need phonons (i.e. vibrations) to allow for absorption.
- This results in less efficient absorption.

Common Semiconductors

<u>Direct</u>

Material	Bandgap (eV)
GaAs	1.4
Amorphous Si	1.6-2.0
CdS	2.4
CdTe	1.5
Cu(InGa)Se ₂	1.7

Energy

-valley

L-valley

Heavy holes

Light holes

Split-off band

Wave vector

X-valley,

<100>

Indirect

Material	Bandgap (eV)
Si	1.1
TiO ₂	3.0
SiC	2.3
GaP	2.3
AIP	2.45

Beer-Lambert Law

 Beer's Law allows us to determine light absorption (@ a given wavelength) as a function of semiconductor thickness.

$$I(x) = I_0 \times exp^{(-\alpha \Delta x)}$$
$$A = -ln\left(\frac{I(x)}{I_0}\right) = \alpha \Delta x$$

I= intensity I_0 = Initial Intensity α =absorption coefficient Δx = thickness A = Absorbance

What is the units of Absorbance?

 When dealing with liquids in solution (such as chlorophyll in an organic medium for photosythesis) there is a slightly modified version.

$$A = -Ln\left(\frac{I(x)}{I_0}\right) = \varepsilon CL$$

ε =extinction coefficientC = concentration (Mol/L)L = length (cm)

 $I(x) = I_0 \times exp^{-\alpha \Delta x}$

Figure from <u>Pveducation.org</u>

In a slab of Si, how deep into the Si do we need to go to absorb 90% of the 400 nm photons? How about the 90% of the 1000 nm photons?-

Other Information from Band Structure

- The inverse of the second derivate (or slope) at the band gap tells us the effective mass $m_e^* = \frac{\hbar^2}{\left(\frac{\partial E(k)^2}{\partial k^2}\right)}$
- The effective mass is in comparison to the mass of an electron in vacuum. This can be greater or less than 1.
- The effective mass of the electrons and holes is usually different
- The larger the effective mass, the slower the electron or hole moves.

An optimal photovoltaic material should have:

- a) a flat band structure for both electrons and holes
- b) a curvy band structure for both electrons and holes
- c) a flat band structure for electrons and a curvy band structure for holes
- d) a curvy band structure for electrons and a flat band structure for holes

Criteria for fast electron/hole transfer

- By looking at a band structure, we can get an indication whether it is a good material
- Basically the more curvy structure, the faster electrons and holes can move, thus this is typically a better solar cell.

Material	Fe ₂ O ₃	GaAs
Electron Mobility	1.1 cm²/V/s	8,500 cm²/V/s

--*References*: <u>#1</u>, <u>#2</u>, and <u>#3</u>

More Fundamental Understanding

- If we are going to photoexcite electrons into the conduction band, it would be nice to know how many electronic states are up there.
- The number of electronic states is

More Fundamental Understanding

- The electrons in the conduction band or holes in the valence band is the number of states times probability of states being filled.
- The probability is given by Fermi-Dirac statistics

$$e^{-} in Conduction Band$$

$$e^{-} = n = N_c exp^{(E_f - E_c)/_{k_bT}}$$
Where N_c is:

$$N_c = 2 \left(\frac{m_c^* k_B T}{2\pi\hbar^2}\right)^{3/2}$$

$$\frac{h^+ in Valence Band}{h^+ = p = N_v exp^{(E_v - E_f)/_{k_bT}}}$$
Where N_v is:

$$N_v = 2 \left(\frac{m_v^* k_B T}{2\pi\hbar^2}\right)^{3/2}$$
N and N are the effective

N_c and N_v are the effective density of states

Physics of a Photovoltage

• By playing around, we can multiply 'n' and 'p' together

$$np = N_c exp^{\left(E_f - E_c\right)} / k_b T} N_v exp^{\left(E_v - E_f\right)} / k_b T}$$

$$np = N_c N_v exp^{-(E_c - E_v)} / k_b T$$

$$np = N_c N_v exp^{-(E_g)} / _{k_b T}$$

Since E_g is a set value this must mean n x p will always be a set value (in the dark).

$$n_i^2 = np = N_c N_v exp^{-(E_g)} / k_b T$$

Intrinsic Doping

- n_i is referred to as intrinsic doping level.
- Since n_i is only a function of E_g, m_c*, m_v* and T it is actually a material specific property (at a given temperature)
- Below is a list of intrinsic dopant levels for a variety of semiconductors at room tempearture.

Material	Intrinsic Dopant Density (cm ⁻³)
Si	1.1 x 10 ¹⁰
Ge	2.4 x 10 ¹³
InP	1.3 x 10 ⁷
GaAs	2.1 x 10 ⁶
InAs	1.0 x 10 ¹⁵
InSb	2.0 x 10 ¹⁶

• We can also intentionally dope our semiconductor

I have two materials with a band gap of 1 eV and 2 eV and the same effective mass for e⁻ and h⁺. Which is true?

- a) The 1 eV material will have a highereffective density of states and a higher intrinsic dopant density.
- b) The 2 eV material will have a larger effective density of states and a higher intrinsic dopant density.
- c) The 1 eV material will have the same effective density of states and a higher intrinsic dopant density.
- d) The 2 eV material will have a higher effective density of states , but a higher intrinsic dopant density.

Physics of a Photovoltage

- How do we actually get a photovoltage.
- During irradiation we add electron-hole pairs (add n and p)
- This provides a splitting of the Fermi level

$$\begin{array}{ll} \underline{\textbf{Conduction Band:}} & n = N_c exp^{\left(E_f - E_c\right)} /_{k_b T} \\ & E_{f,e-} = E_c - k_b T L n \left(\frac{n}{N_c}\right) \\ \\ \underline{\textbf{Valence Band:}} & p = N_v exp^{\left(E_v - E_f\right)} /_{k_b T} \\ & E_{f,h+} = E_v + k_b T L n \left(\frac{p}{N_v}\right) \end{array}$$

hotovoltage:
$$E_{PV} = E_{f,e-} - E_{f,h+}$$

Ρ

$$N_c = 2 \left(\frac{m_c^* k_B T}{2\pi\hbar^2}\right)^{3/2}$$

m_c- effective mass of electrons

$$N_{\nu} = 2 \left(\frac{m_{\nu}^* k_B T}{2\pi\hbar^2}\right)^{3/2}$$

m_v- effective mass of holes

Analysis of Photovoltage

- The photovoltage is sometimes denoted at a difference in chemical potential ($\Delta\mu$)
- By rearranging the photovoltage equation we get the following

$$\Delta \mu = E_g + k_b T L n \left(\frac{pn}{N_v N_c}\right)$$

This is a negative term since Ln <1 is negative

- This shows that increasing the electrons (n) and holes (p) we get an increased photovoltage
- N_v and N_c relate to band gap (intrinsic property) and effective mass (material specific).
- 'pn' can easily change by many orders of magnitude where N_c and N_v can change 1-2 orders of magnitude maximum.

Varying Semiconductor Fermi Level (in Dark)

- By doping the semiconductor with electrons or holes, we can modify the Fermi level.
- Adding a small amount of a material with extra electrons (i.e. donors) is called n-doping.
- Adding a small amount of a material with extra holes (i.e. acceptors) is called p-doping.

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

	Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/														
57 La Lanthanum 138.90547	2000002	58 28 Ce 19 Cerium 2 140.118	59 Pr Paseodymium 140.90785	² Nd Neodymium 144.242	61 28 Pm 23 Promethium 2 (145)	62 2 Sm 24 Samarium 2 150.38	63 2 Eu 25 Europium 2 151.984	64 25 Gd 25 Gadolinium 157.25	65 28 Tb 27 Terbium 2 158.92535	66 28 Dy 28 Dysprosium 2 182.500	67 28 Ho 29 Halmium 184.93032	68 28 Er 30 Erbium 2 107.259	69 2 Tm 31 Thulium 2 168.93421	70 28 Yb 32 Ytterbium 173.054	71 28 Lu 32 Lutetium 2 174.9888
89 Ac Actinium (227)	200020002	90 2 Th 32 18 Thorium 232 03806	91 Pa Protactinium 231.03588	2 92 2 18 2 92 2 18 0 18 0 22 18 0 22 18 0 22 18 0 22 18 0 22 21 0 22 12 0 2 12 0 2 12 0 2 12 0 2 12 12 12 12 12 12 12 12 12 1	93 2 Np 22 Neptunium 9 (237) 2	94 28 Pu 24 Plutonium 2 (244)	95 28 Am 25 Americium 22 (243) 25	96 25 Cm 25 Curium 22 (247) 22	97 28 Bk 227 Berkelium 2 (247) 2	98 28 Cf 32 Californium 2 (251) 2	99 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 28 Fm 32 Fermium 28 (257) 28	101 28 Md 32 Merdelevium 2 (258)	102 2 No 32 Nobelium 2 (259) 2	103 ² Lr ¹⁵ Lawrencium ⁹ (282)

How to get an n-type or p-type material

• Here are the most common ways to make Si n-type or p-type.

• Here are the most common ways to make Si n-type or p-type.

Doping-orders of magnitude

- Most semiconductors have around 10²⁰ 10²³ atoms/cm³.
- The dopant densities differences between n-type and p-type are order of magnitude.
- 'Highly doped' is usually 0.01%-0.1%
- Too highly doped materials may put excessive strain on the crystal lattice.
- Dopant densities greater than 1% are more like alloys than dopants.

Material	Atomic Density (cm ⁻³)
Si	5 x 10 ²²
Ge	2.2 x 10 ²²
InP	4.0 x 10 ²²
GaAs	4.4 x 10 ²²
InAs	3.6 x 10 ²²
InSb	2.9 x 10 ²²

Fermi Level with Respect to Band Locations

$$n_e n_h = n_i^2$$

 $(N_v = 1.04 \times 10^{19} \text{ cm}^{-3} \text{ in Si})$

Break

Electron-hole recombination

- There are 2 major things that can happen when electron and holes recombine.
 - Radiative recombination
 - This simply means that the electron-hole produces a photon.
 - Potentially this photon could be reabsorbed by the photoabsorber.
 - Non-radiative recombination
 - This basically means the electon-hole produce heat.
 - This means the energy is wasted.
 - Non-radiative recombination
- A 3rd type of recombination, Auger recombination can happen in highly efficient cells.

Radiative recombination - Qualitative

- The energy of a radiatively recombined photon is the energy difference between the electron and hole.
- This is identical to the 'emission term' in the ideal diode equation
- Radiative photons below band gap sites can not be reabsorbed.

Radiative Recombination- Quantitative

• The radiative recombination **<u>in p-type materials</u>** is:

$$U_{rad}^{net} = \frac{n - n_0}{\tau_{n,rad}} \qquad \tau_{n,rad} = \frac{1}{N_A B_{rad}}$$

 U_{rad}^{net} = Net radiative emission rate n = # of electrons $n_0 = \#$ of electrons in dark $\tau_{n,rad}$ = radiative lifetime of electrons N_A = Dopant density of acceptors B_{rad} = Intrinsic material parameter

• The radiative recombination in <u>n-type materials</u> is:

$$U_{rad}^{net} = \frac{p - p_0}{\tau_{p,rad}} \qquad \tau_{p,rad} = \frac{1}{N_D B_{rad}}$$

 U_{rad}^{net} = Net radiative emission rate p = # of electrons $p_0 = #$ of electrons in dark $\tau_{p,rad}$ = radiative lifetime of holes N_D = Dopant density of donors B_{rad} = Intrinsic material parameter

Auger Recombination- Qualitative

- If an electron and hole recombine, they can transfer their energy to a 2nd electron in the conduction band
- This 2nd electron goes up and energy, and then comes back down.

- When the 2nd electron comes back down, its energy is lost as nonradiative recombination.
- For this to take place, their needs to be a lot of electrons in the conduction band.

Auger Recombination- Quantitative

 Auger recombination can occur with extra electron excitation or extra hole excitation

$$U_{VB,Aug} = A_{Aug}(np^2 - n_0 p_0^2)$$
$$U_{CB,Aug} = A_{Aug}(n^2 p - n_0^2 p_0)$$

 $U_{VB,Aug}$ = Auger recom. in the valence band $U_{CB,Aug}$ = Auger recom. in the conduction band A_{Aug} = Intrinsic material parameter

Auger recombination for **p-type materials** leads to: $\tau_{VB,Aug} = \frac{1}{A_{Aug}N_A^2}$ **Auger recombination for n-type materials** leads to: $\tau_{CB,Aug} = \frac{1}{A_{Aug}N_D^2}$

 $\tau_{VB,Aug}$ = Auger lifetime of electrons in valence band $\tau_{CB,Aug}$ = Auger lifetime of holes in conduction band

Non-radiative Recombination - Qualitative

- Basically this is radiative recombination, but the energy is so small it basically is absorbed by vibrational energy of the atoms.
- Typically if the electron-hole recombination energy will give off radiation not in the visible range, it is considered nonradiative.
- This is also known as Shockley-Reed Hall (SRH) recombination.

Where does non-radiative sites come from?

• One major source of defects are bulk defects- as shown below.

SRH recombination- Quantitative

• The SRH recombination **<u>in p-type materials</u>** is:

$$U_{SRH} = \frac{n - n_0}{\tau_{n,SRH}} \qquad \tau_{n,non-rad} = \frac{1}{\sum_{i=VB}^{i=CB} N_{t,i}B_{n,i}} \qquad \bigcup_{SRH}^{O_{SRH} = Net SRH rate} \\ \tau_{n,SRH} = non-radiative lifetime of e-N_{t,i} = \# of traps at energy level, i CB = Conduction band VB = Valence band$$

$$v_n$$
 = electron thermal velocity (~ 10⁷ cm/s)
 $B_{n,i} = v_n \sigma_{t,n,i} \leftarrow \sigma_{t,n,i}$ = trap cross section for electron at an Energy level i

• The SRH recombination in <u>n-type materials</u> is:

$$U_{SRH} = \frac{p - p_0}{\tau_{p,SRH}} \qquad \tau_{p,non-rad} = \frac{1}{\sum_{i=VB}^{i=CB} N_{t,i}B_{p,i}} \quad B_{p,i} = v_p \sigma_{t,p,i}$$

• The recombination current is determined by the non-dominant carrier (i.e. electron or hole)

General trends regarding lifetimes

- Defect states / recombination states / trap states all mean the same thing.
- An analysis of the recombination rate math shows at non-highly doped semiconductors:

$$\tau_{n,SRH} \ll \tau_{p,SRH} \longrightarrow$$
 Electron trap, little recombination

 $\tau_{n,SRH} \approx \tau_{p,SRH} \longrightarrow$ Recombination site, a lot of recombination

 $\tau_{n,SRH} \gg \tau_{p,SRH} \longrightarrow$ Hole trap, little recombination

• Basically a defect state near the valence of conduction band is OK, but a defect state in the middle of the band gap will create large amounts of recombination sites

Other non-radiative recombination sites

- Surface defects are the other major area for non-radiative recombination.
- These results from incomplete bonds between surfaces.

- This is probably the biggest fixable loss in solar cells.
- The best way to mitigate these is to create an insulating layer at the surface.
- There is a lot of technology in trying to resolve this issue.

Si Wafer

Surface States- Quantitative

- It is easiest to losses from surface states as simply a current loss (i.e. J_n and J_p).
 2-D form of SRH losses
- Quantitatively this is as followed:

Loss at hole collecting side

$$J_n(@x_s) = -S_n(n-n_0)$$

Loss at electron collecting side

 $J_p(@x_s) = S_p(p - p_0)$

$$S_n = \sum_{i=VB}^{i=CB} N_{t,i} B_{n,i}$$

i = CB

 $S_n = \sum N_{t,i} B_{n,i}$

 This current is only a loss if the holes go to the surface where the electrons are supposed to go into the circuit or vice versa.

Recombination Losses in General

- Non-radiative recombination (NRR)- is always a bad thing thus this must be avoided.
 - High purity materials and good engineering can almost completely eliminate these losses
- *Radiative recombination (RR)* This is normally a good thing.
 - RR can simply get reabsorbed again by the photocatalyst.
 - Some RR can simply escape the photocatalyst, thus leading to a loss of photons.
- *Auger recombination (AR)* This is a minor loss
 - AR only occurs if there are lots of electron-hole pairs.
 - Thus at low light intensities (or high NRR) there are so few electrons that this rarely occurs
 - At high light intensities and/or very efficient cells, this loss becomes more and more important.

Lecture - Learning Objectives

At the end of this lecture you should be able to:

- Understand light absorption and how it applies to solar cells.
- Explain why we can not get 100% efficiency from our solar cells and denote where the losses are coming from.
- Understand what parameters makes a material a good solar cell.
- Understand where practical losses are coming from in solar cells.

- Theoretically how does the photovoltage vary with photogenerated electron-hole pairs?
- a) Logarithmically
- b) Linearly
- a) Exponentially
- b) It is always a constant

- The optimal band gap for a single photoabsorber solar cell is ?
- a) 0.4 0.8 eV
- b) 1.1-1.8 eV
- a) 2.4 3.5 eV
- b) 8.0-10.0 eV

- Which of these is not a typical type or recombination?
- a) Radiative Recombination
- b) Shockly-Reed-Hall Recombination
- a) Band bending Recombination
- b) Auger Recombniation

- If I have a p-type material my SRH recombination is?
- a) linearly proportional to the number of holes in the semiconductor
- b) logarithmically proportional to the number of holes in the semiconductor
- c) proportional to the number of electrons in the semiconductor
- d) logarithmically proportional to the number of electrons in the semiconductor
Exercises

- A material starts absorbing at 620 nm. What is its band gap?
- Calculate the thickness of GaAs, CdTe, and Si to absorb ~90% of all above band gap photons. Use a uniform extinction coefficient (200 nm above the band gap). Assume 20% efficient cells, 1000 W/m² of solar irradiation that occurs only 20% of the time (the other 80% it is cloudy or dark). How much material do you need in Kg for 1TW? Compare this to Peter Vesborg's paper on materials production. How scalable is each of these technologies?