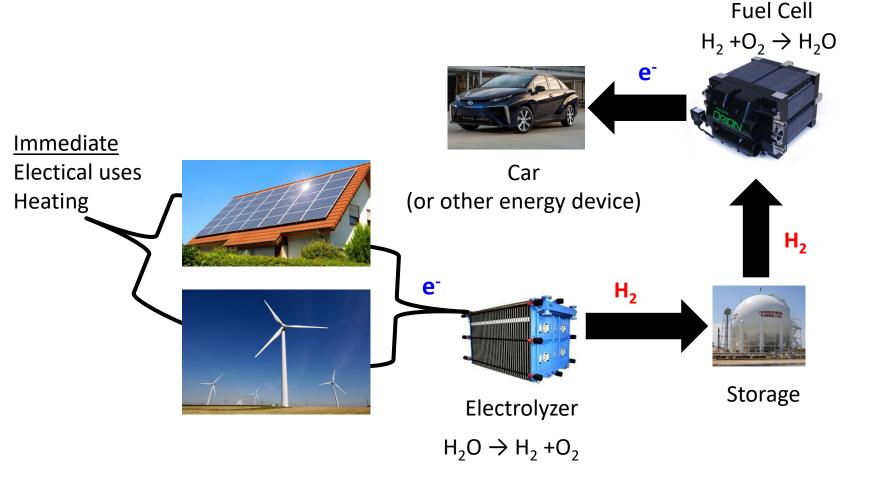

Electricity to fuels



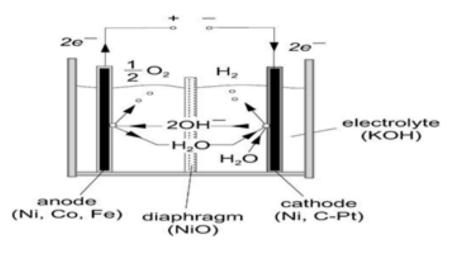
Learning Objectives

- From this lecture you should be able to understand:
 - The fundamental physics behind electrolyzers.
 - How to improve the efficiency/costs of electrolyzers.
 - The fundamental scientific principles behind CO₂ reduction.

The H₂ economy

- The issue with the hydrogen economy is how do we produce hydrogen? Currently we use fossil fuels.
- Electrochemistry can provide the solution.

Electrolyzers


- Electrolyzers only produce about 3-5% of the total hydrogen.
- All the H₂ the electrolyzers produce in 1 year corresponds to 0.35 EJ.
 This is enough energy storage to support the world for 8 hours.
- Their basic fundamentals are like a fuel cell in reverse.
- Unlike fuel cells, you can keep adding voltage to get more H_2 and O_2 .
 - Fuel cells run from 0.2-1.5 A/cm², electrolyzers run at 4-10 A/cm².
- There are 3 major types of electrolyzers.
 - Alkaline electrolyzers (done in a basic environment).
 - Proton Exchange Membrane (PEM) electrolyzers (done in an acidic environment).
 - Solid Oxide fuel electrolyzers- can also work with organic/fossil fuels

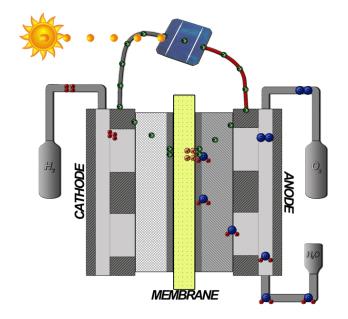
Alkaline (basic) electrolyzers

- Alkaline electrolyzers currently have the dominant market share.
- They are similar to an alkaline fuel cell, except done in reverse.

Anode:
$$H_2O + e^- \rightarrow H_2 + 2OH^-$$

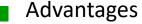
Cathode: $2OH^- \rightarrow \frac{1}{2}O_2 + 2H_2O + 2e^-$
Overall: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ 1.23 V

- They typically use a diaphragm rather than a membrane to keep the gases from mixing.
- Very recently (last 5 years) anionic membranes have been commercialized.


Alkaline (basic) electrolyzers

- The great thing about alkaline electrolyzers are they use no noble metals.
- Their major disadvantage is inefficient ionic conductivities / gas crossover.
- The alkaline electrolyte can easily cause corrosion as well.
- Electrolyzer cells are stacked just like fuel cells.
- Each device to the right produces roughly 33 kg/s of H₂.

PEM electrolyzers


- The new approach to electrolyzers is to basically run a proton exchange membrane fuel cell in reverse.
- The key advantage is that the efficiencies can be higher especially at high current densities.
- This is due to ionic conductivity advantages of a PEM
- The major issue with these is the best catalysts are noble metals.

Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$ Cathode: $2H^+ + 2e^- \rightarrow H_2$

Overall:
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

Competing Technologies

Disadvantages

Table 1 – Main characteristics of AEC, PEMEC and SOEC systems.

	AEC	PEMEC	SOEC
Electrolyte	Aq. potassium hydroxide	Polymer membrane	Yttria stabilised Zirconia
	(20-40 wt% KOH) [9,32,33]	(e.g. Nafion) [33,34]	(YSZ) [37,38]
Cathode	Ni, Ni-Mo alloys [9,32,33]	Pt, Pt-Pd [34]	Ni/YSZ [37,38]
Anode	Ni, Ni-Co alloys [9,32,33]	RuO ₂ , IrO ₂ [34]	LSM ^b /YSZ [37,38]
Current density (A cm ⁻²)	0.2-0.4 [34]	0.6–2.0 [34]	0.3–2.0 [9,38]
Cell voltage (V)	1.8-2.4 [34]	1.8–2.2 [34]	0.7-1.5 [38]
Voltage efficiency (% _{HHV})	62-82 [34]	67-82 [34]	<110 [33]
Cell area (m²)	<4 [33]	<0.3 [33]	<0.01 [33]
Operating Temp. (°C)	60-80 [34]	50-80 [34]	650-1000 [37,38]
Operating Pressure (bar)	<30 [33]	<200 [33]	<25 [33]
Production Rate ^c ($m^3_{H2} h^{-1}$)	<760 [33]	<40 [33]	<40 [33]
Stack energy ^c (kWh _{el} m_{H2}^{3-1})	4.2–5.9 [34]	4.2-5.5 [34]	>3.2 [33]
System energy ^c (kWh _{el} m ^{3–1} _{H2})	4.5–6.6 [16]	4.2-6.6 [16]	$>3.7 (>4.7)_{kWh_energy}^{a}$
Gas purity (%)	>99.5 [32]		00 0 ²
Lower dynamic range ^d (%)	10 - 40 [33,34]	INTERNATIONAL JOURNA	AL OF HYDROGEN ENERGY 4
System Response	Seconds [33]	Milliseconds [33]	Seconds ^a
Cold-start time (min.)	<60 [16]	<20 [16]	<60 ^a
Stack Lifetime (h)	60,000–90,000 [16]	20,000-60,000 [16]	<10,000 ^a
Maturity	Mature	Commercial	Demonstration ^a
Capital Cost ($\in \mathrm{kW}_{\mathrm{el}}^{-1}$)	1000-1200 [16]	1860–2320 [16]	>2000 [16]

^a Where no reference is provided, data were derived during expert elicitations.

^b Perovskite-type lanthanum strontium manganese (La_{0.8}Sr_{0.2}MnO₃).

^c Refers to norm cubic meter of hydrogen (at standard conditions) and respective electrical energy consumption (kWh_{el}) if applicable.

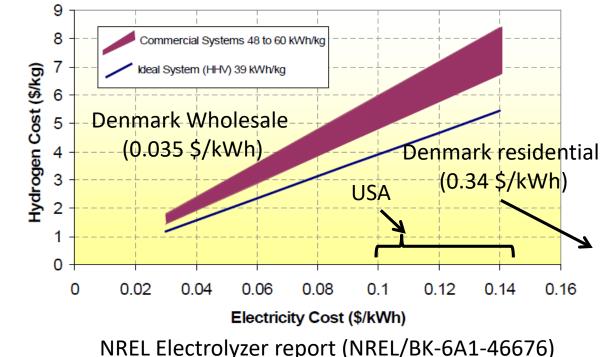
^d Minimum operable hydrogen production rate relative to maximum specified production rate.

Schmidt et al., 2017 Int, Jn. of Hyd. Energy, 42, 30470-30492

Why acidic or basic electrolyzers

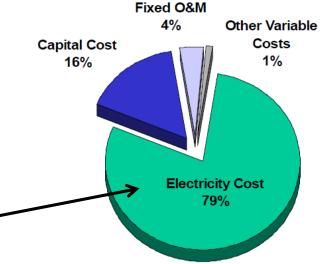
- All electrolyzers (and fuel cell cells) need to minimize ionic conductivity losses.
- H⁺ is the most conductive ion, and OH⁻ is the 2nd most conductive.
- If we try things at neutral pH, the ionic conductivity losses dominate.

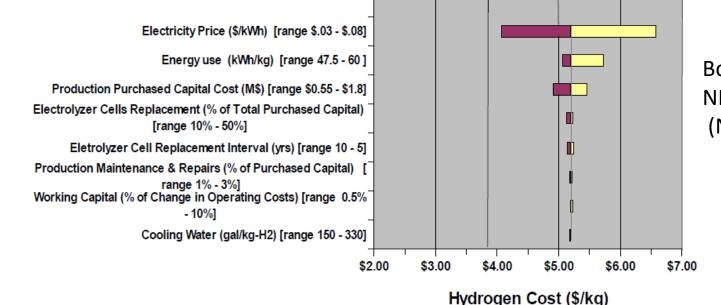
 $V = i \times R_{Cond}$


 Many researchers brag about electrolyzer catalysts that work at pH=7. Who cares?

		r	
Cations	$\lambda_{\!\scriptscriptstyle +}^{0}$ mS m 2 mol $^{-1}$	Anions	λ_ ⁰ mS m²mol ⁻¹
H+	34.96	OH⁻	19.91
Li+	3.869	Cl-	7.634
Na+	5.011	Br⁻	7.84
Mg ²⁺	10.612	SO ₄ ²⁻	15.96
Ca ²⁺	11.900	NO ₃ ⁻	7.14

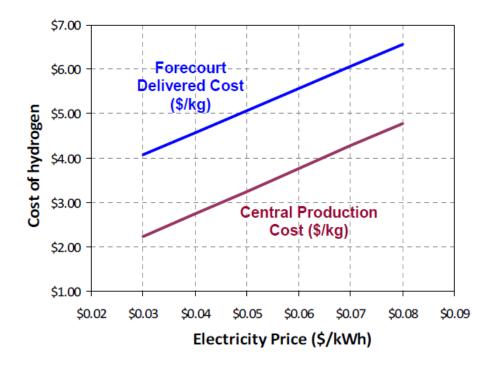
Ionic conductivities (from wikipedia)

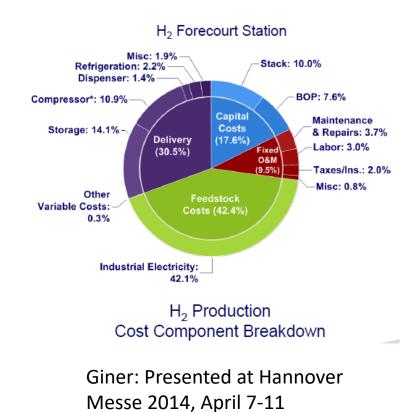

Electrolyzers- economic limits


- The chart below related electricity cost to hydrogen cost.
- The blue line is the thermodynamic limit (1.23 V)
- This chart does not include any capital costs, maintenance, etc.
 It is a 'best-case scenario' chart.
- 1 kg H₂≈ 1 gallon gasoline ≈ 4 L gasoline.
- A large electrolyzer plant will get significantly cheaper electricity than the residential costs.

PEM electrolyzers- economic limits

- The DOE did a sensitivity analysis with regards to electrolyzer cost.
- There are certain areas we can 'technology our way out of'.
- There are other areas we can't (directly).-




Both Figures from NREL Electrolyzer report (NREL/BK-6A1-46676)

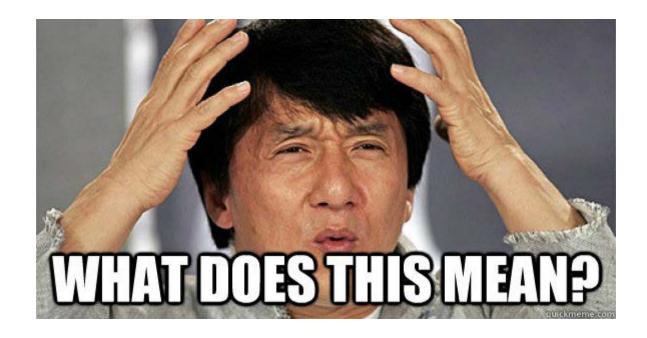
PEM electrolyzers

- There are significant delivery costs (Forecourt costs) compared to the cost of H₂ leaving the plant.
- Note the x-axis- The price tends to get quite high as the electricity price increases.

NREL Electrolyzer report (NREL/BK-6A1-46676)

Break

Electrolyzer Thermodynamics


• Electrolyzers are the opposites of fuel cells in many ways

	PEM Fuel cells	PEM Electrolyzers	
Overall reaction:	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	$H_2 O \rightarrow H_2 + \frac{1}{2}O_2$	
Anode:	$H_2 \rightarrow 2H^+ + 2e^-$	$H_2 O \rightarrow 2e^- + 2H^+ + \frac{1}{2}O_2$	
Cathode:	$2e^- + 2H^+ + \frac{1}{2}O_2 \to H_2O$	$2H^+ + 2e^- \rightarrow H_2$	
Max Efficiency (η):	$\frac{\Delta G}{\Delta H}$	$\frac{\Delta H}{\Delta G}$	
Operational Voltage:	V _{op} < 1.23 V	V _{op} > 1.47 V	

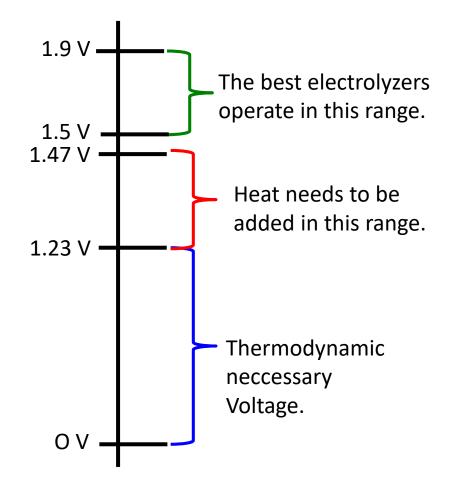
Thermodynamic efficiency

• Can we get over 100% thermodynamic efficiency in our electrolyzer?

Yes!

- Can we get over 100% thermodynamic efficiency in our electrolyzer?
- You need to think of the entire system.

Thermodynamic efficiency


- The key is the entropy.
- If the electrolyzer is over 100% efficient, the entropic term will cool the reaction.

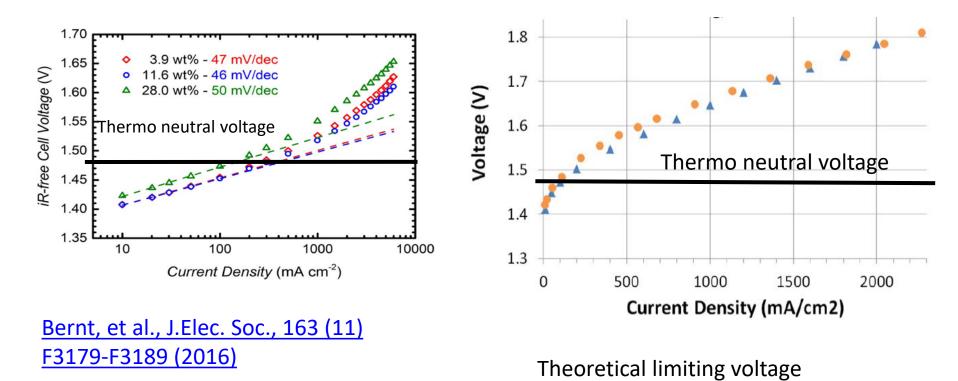
$$\eta_{Electrolyzer} = \frac{\Delta H}{\Delta G} = \frac{\Delta H}{\Delta H - T\Delta S} = \frac{1.48 V}{1.23 V} = 119\%$$

- In the case of >100% efficiency, heat would needed to be added to the cell to maintain the temperature.
- Thus the added heat would need to compensate from the entropic advantage the electrolyzer gets.
- However heat is a 'cheap' form of energy, so getting a little excess heat is easy from a practical standpoint.

Thermodynamic efficiency

- The 1.48 V is sometimes referred to as the thermo-neutral water splitting potential.
- Our efficiencies are almost to the point where we reach 100% efficiency.
- We normally add extra voltage to give higher current (Tafel equation).
- This means we need a smaller electrolyzer, thus cheaper capital costs.

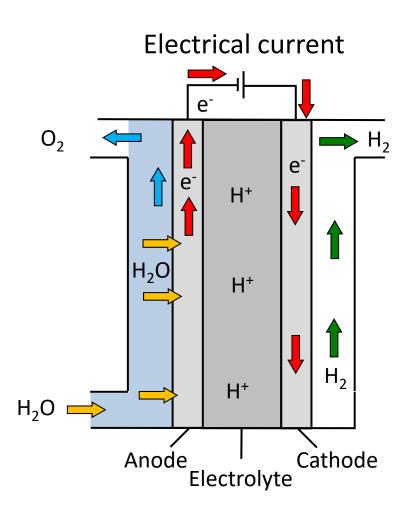
Pressure effects on voltage


- Just like fuel cells, modifying the pressure, modifies the theoretical voltage.
- Using the Nernst Eqn and only modifying pressure, we have:

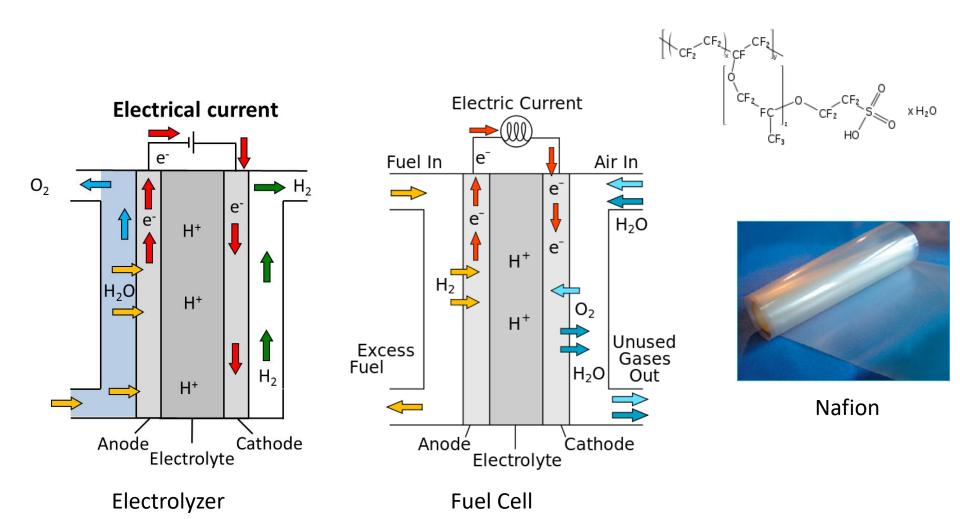
$$E = E^{0} + \frac{RT}{F} Ln \left(\frac{\frac{P_{H_2O}}{P}}{\left(\frac{P_{O_2}}{P}\right)^{0.5} \frac{P_{H_2}}{P}} \right) = E^{0} + \frac{RT}{2F} Ln \left(\frac{1}{P^{0.5}}\right)$$
This is effectively a concentration

- An increase in pressure from 1 atm to 200 atm changes the voltage needed by 34 mV (@25 C)
- Since H₂ is typically stored at high pressures, operating electrolyzers at high pressures some benefits as long as the device can handle the pressure.

Efficiency


- Below are i-V curves of the best PEM electrolyzers.
- At low currents, it is possible to be below the thermoneutral voltage.
- Higher currents help out in minimizing capital costs.

PEM Electrolyzer

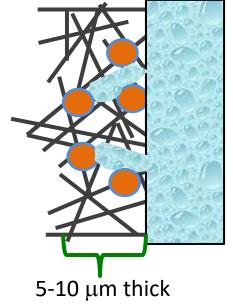

Places for potential energy loss

- Proton transfer
- Electron transfer
- Anode
- Cathode


Proton transfer

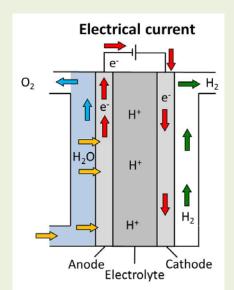
- This is just like fuel cells, but in reverse.
- In this field Nafion is also the best proton exchange membrane.

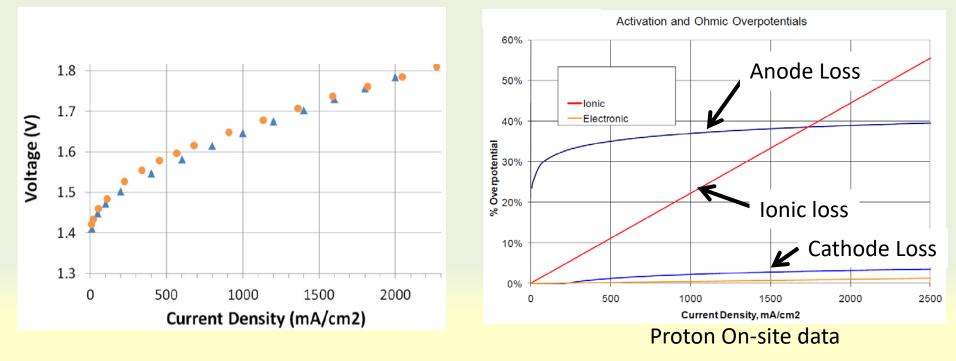
Proton exchange membrane


- In fuel cell we really needed to work in keeping the membrane fully hydrated (i.e. 100% relative humidity.)
- The electrolyzer is in water, so the membrane is always fully humidified.
- H₂ crossover through the membrane is dangerous because H₂ and O₂ can combust.
- This is solved by a thicker membrane.
- Thicker membrane = higher resistance.

Giner: Hannover Messe, 2014

Triple phase boundary


- In the fuel cell maximizing the triple phase boundary was extremely important.
- In electrolyzers the electrolyte the aqueous solutions works as a quasi-proton transfer medium.
- However these devices run in pure water rather than an acidic environment to prevent corrosion.
- It is still important to spread out the catalysts for minimizing gas transport issues due to bubble formation.



Efficiency

Places for potential energy loss

- Proton transfer
- Electron transfer
- Anode
- Cathode

• Discuss why the anode and ionic losses look the way they do.

Understanding electrolysis

If you have a standard 9V battery (with 500 mA x hr), how much hydrogen can you produce with:

A) 2 Pt wires (assume no ohmic resistance, no mass transfer loss and a constant 300 mV overpotential).

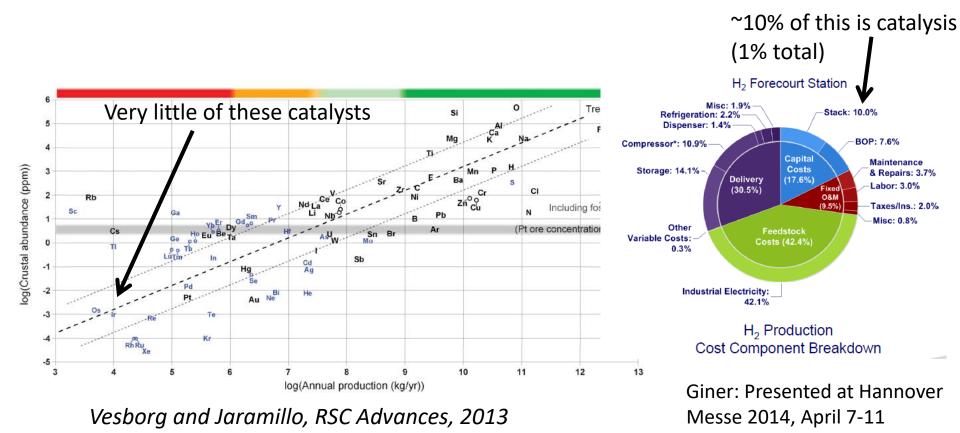
B) 2 Graphite pencils (assume no ohmic resistance, no mass transfer loss and a constant 1.5 V overpotential).

What is the conversion efficiency (i.e. H_2 stored energy/battery stored energy)

Understanding electrolysis

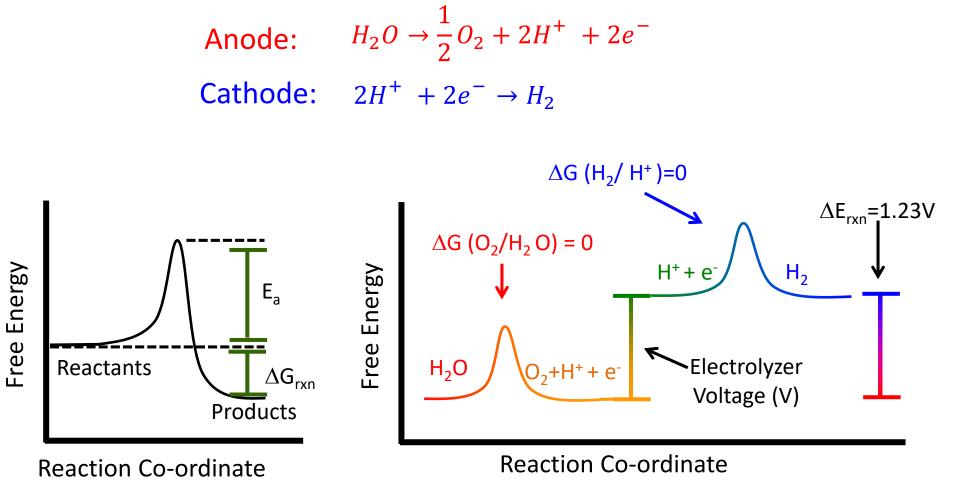
If the voltage of your electrons are at 9V, you will split water no matter what your overpotential (unless you are mass transfer limited).

500 mA x hr= 0.5 C/s x 3600 s = 1800 C

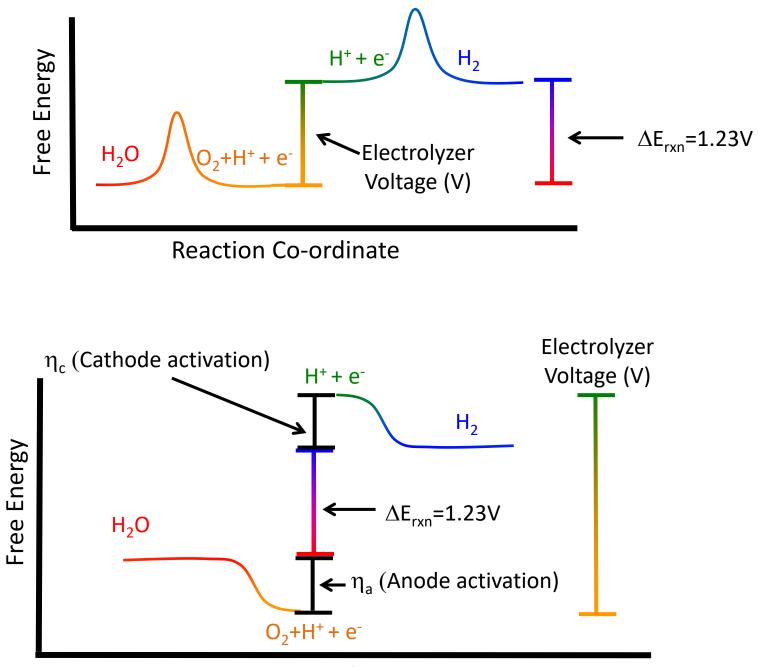

1800 C ÷ 96,485 C/mol e⁻ ÷ 2 mole e⁻ / mol H₂ = 0.009 mol H₂.

Energy from $H_2 = 1.23 \text{ V} \times 1800\text{C} = 2.24 \text{ kJ}$ Energy from Battery= $9 \text{V} \times 1800 \text{C} = 16.2 \text{ kJ} = 14\%$

Point to make: Don't use a higher voltage than you need to split water.


Scalable catalysts

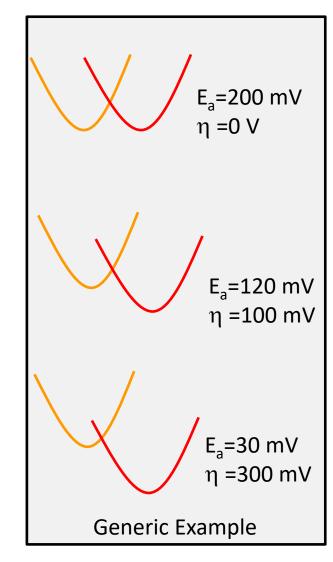
- Currently electrolyzer's small market share allow them to use large amount of noble metals. This is not scalable.
- Much of the issues are engineering issues.
- However the catalysis is still a fundamental science issue.


Anode and cathode

• We can use a similar approach as the fuel cells to understand the electrolyzer reactions.

Heterogeneous Catalysis

Electrochemical Catalysis


Reaction Co-ordinate

Quantifying losses

- As you increase the voltage drop (η) you decrease the Ea.
- Again, the Tafel equation is used

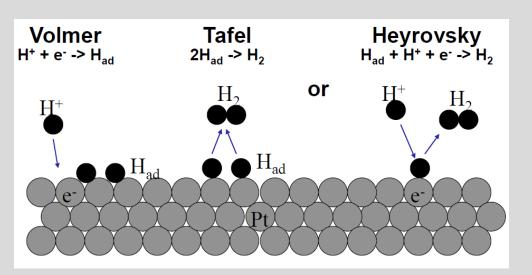
$$i = i_0 exp^{\frac{\eta}{A}}$$
 or $\eta = ALn\left(\frac{i}{i_0}\right)$

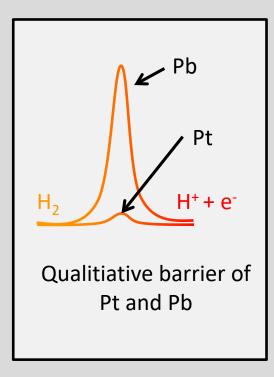
i is the current (mA/cm²)
 *i*₀ is the current exchange density (mA/cm²)
 η is the overpotential (i.e. voltage drop) (V)
 A is the Tafel slope

Catalysis

- Both the anode and cathode follow the same electrochemistry principles as the fuel cell.
- The hydrogen reaction is the easiest to understand, so we will start there first.

Cathode: $2H^+ + 2e^- \rightarrow H_2$

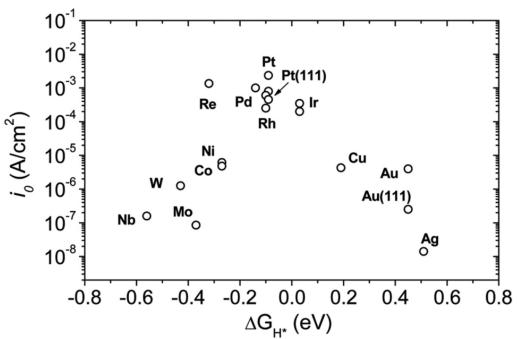

- Platinum is good, but expensive.
- Can we find an alternative that is just as good, but much cheaper.
- Why is platinum a good catalyst?


Table 3.1 i_0 for the hydrogen electrode for various metals for an acid electrolyte. (Bloom, 1981)

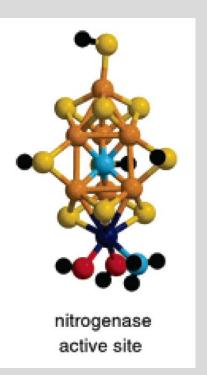
Metal	$i_0 (A \mathrm{cm}^{-2})$
Pb	2.5×10^{-13}
Zn	3×10^{-11}
Ag	4×10^{-7}
Ni	6×10^{-6}
Pt	5×10^{-4}

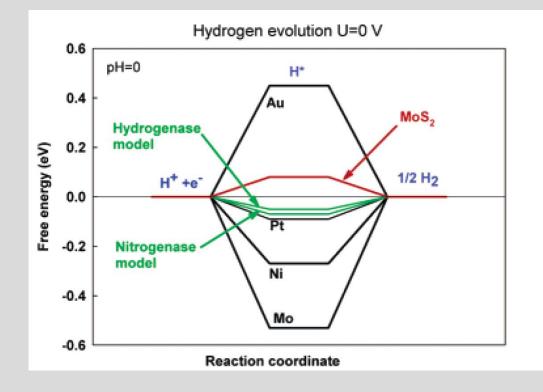
Designing good catalysts

- Pt for H₂ evolution is almost the perfect catalyst, but why?
- First we need to understand the intermediates.
- Overall reaction: $H_2 \rightarrow 2H^+ + 2e^-$

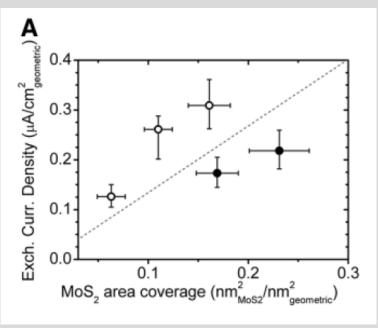


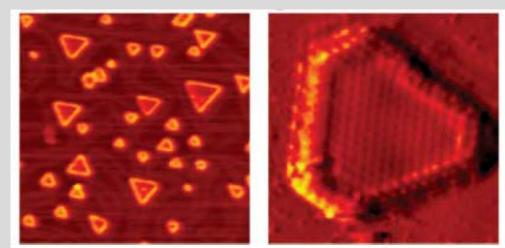
- Either the Tafel or the Herovsky mechanism occurs first (debated)
- The Volmer mechanism is the 2nd step to removing the protons


Volcano plot


- With the hydrogen reaction there are two things that happen
 - The proton binds to the surface
 - It combines with another hydrogen
 - The hydrogen leaves the surface
- If the hydrogen binds too weakly, it won't stick, but if it binds too strongly if will never leave.
- Thus there is an optimal binding energy.
- Plotting catalysts versus binding energy yields a 'volcano' plot.
- All noble metals are at the top.

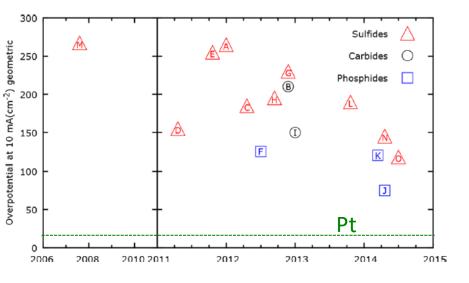
How nature resolves this issue


- The nitrogenase enzyme produces hydrogen and doesn't use noble metals.
- Ib Chorkendorff, Jens Nørskov, and Tom Jaramillo realized that MoS₂ was pretty similar.



MoS₂

- The current exchange density was about the same as Ni (100x worse than Pt), but was stable in acid.
- Interestingly, it was only the edges that were active. The bulk was in-active.



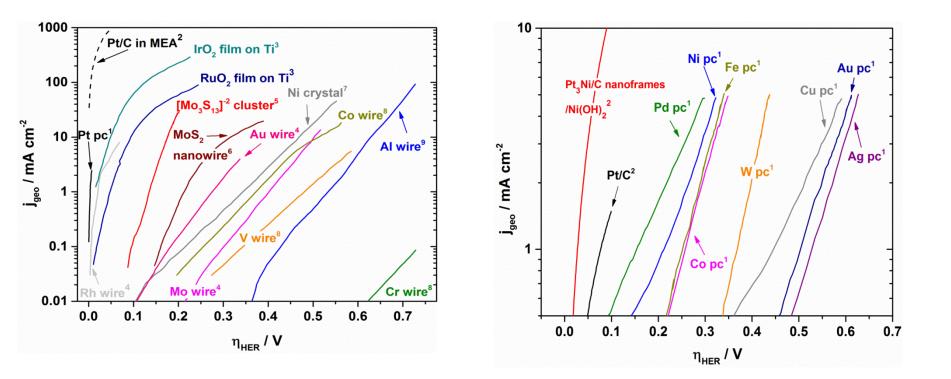
Microscopy images of MoS₂

Figures from Jaramillo, et al., Science, 2007

Progression over time

- The scientific community has slowly optimized this catalysis.
- Using a 'follow nature' approach phosphides such as MoS₂, CoP, NiP, and FeP all have been shown to be quite effective.
- Pt is so good though, we need such a small amount, it is actually scalable to the TW scale.

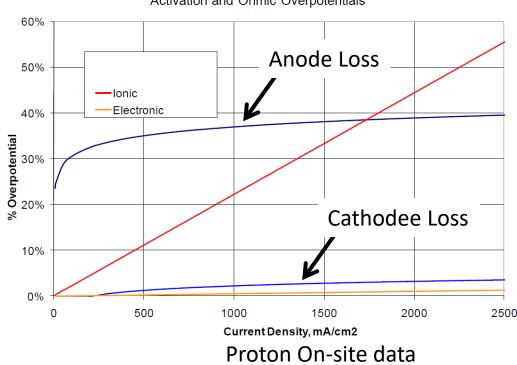
Vesborg, et al., JPC-L, 2015

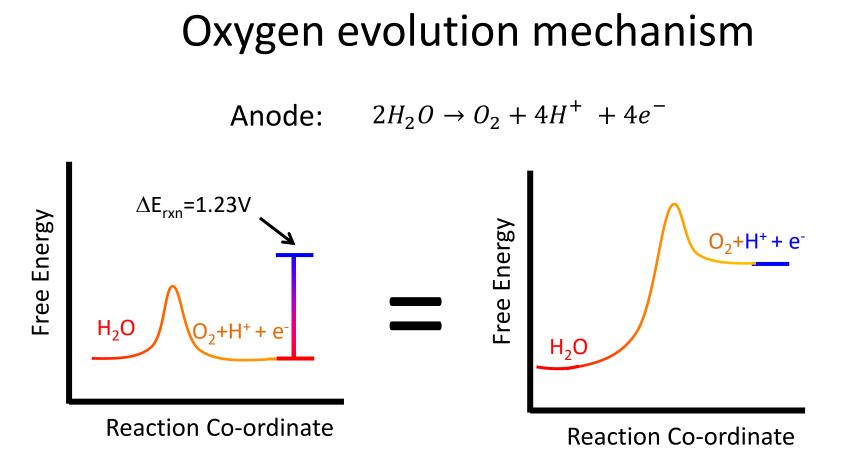

Table 2Current state-of-the-art H_2 evolution catalysts and what percentof the global production (2010 values) would be needed to produce 1 TWworth of H_2 at an overpotential of 75 mV and 15% capacity

Catalyst	Ref.	i @75 mV η (mA mg $^{-1}$)	% of Annual production/TW		
MoS_2	46	0.6	2200 (of Mo)		
CoP	12	6.5	670 (of Co)		
Ni ₂ P	11	1.5	220 (of Ni)		
FeP	17	48	0.13 (of P)		
Pt	This work	171 600	16		

Kemppainen, et al., E&ES, 2015

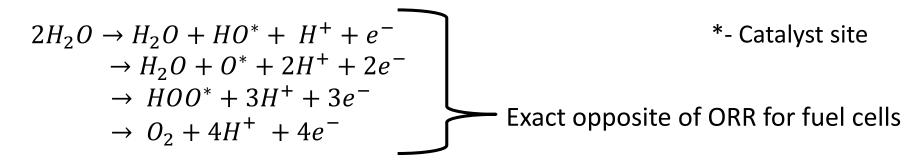
Hydrogen Evolution Catalysts Acid vs Base

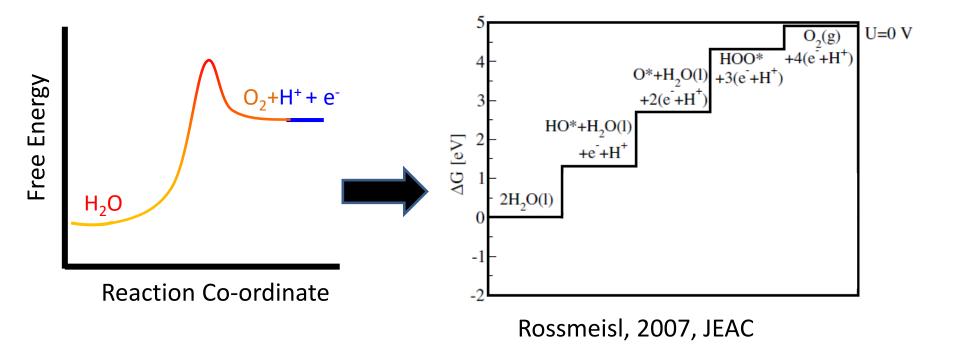

- Acid is better, but basic conditions have many cheap alternatives.
- Ionic resistance is worse in basic solutions.

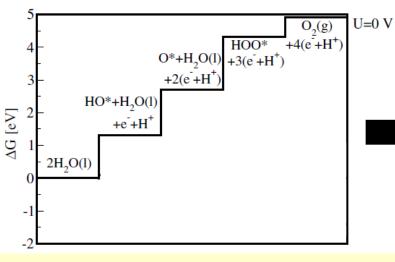


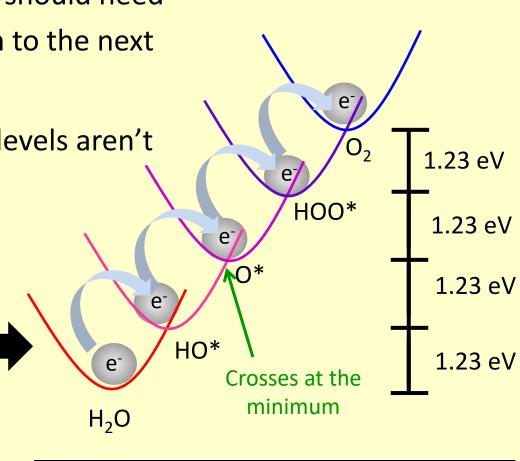
Oxygen evolution

Anode: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

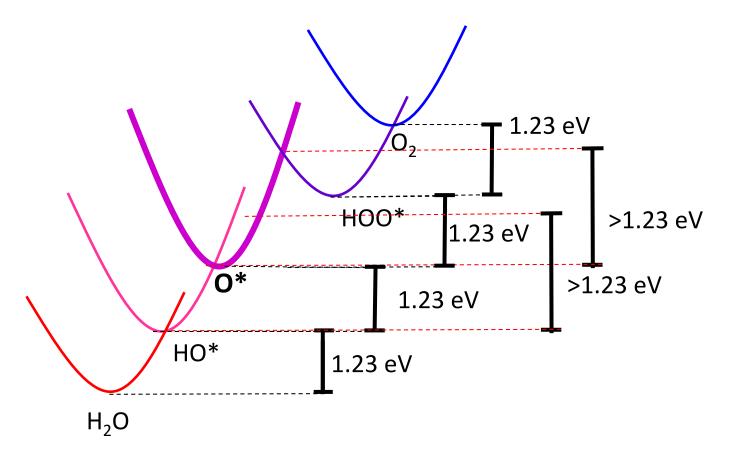

- The oxygen evolution reaction involves more electrons so it probably will be harder.
- Since this is the opposite of the fuel cell oxygen reduction reaction, it should be quite similar.
- If we take the same approach of looking at binding energies we should be able to minimize this loss.




- We can equivalently state that when the H₂O oxidation progresses, the electrons need to move to a higher energy.
- This equivalent approach helps is explaining this mechanism.

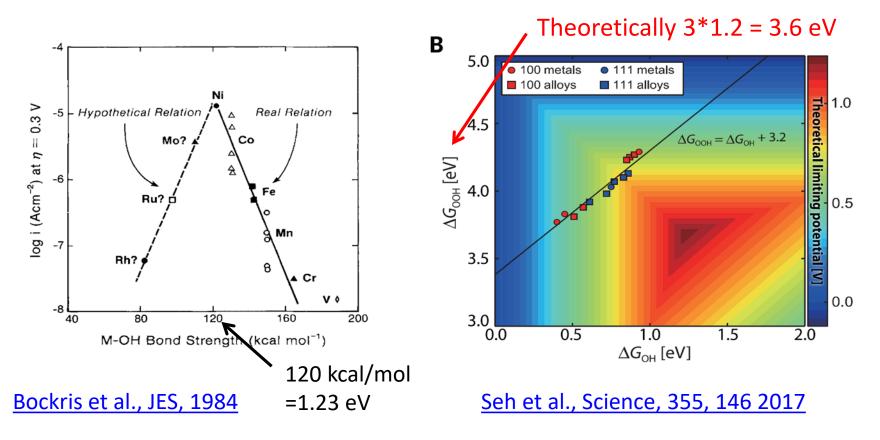

• The most commonly proposed mechanism is shown below:

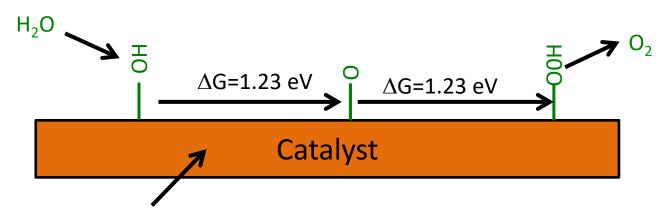
- Using the principles of transition state theory/Marcus theory, we can look at the individual steps.
- In theory each of the 4 steps should need
 1.23 eV to move the electron to the next
 step.
- What happens if the energy levels aren't aligned properly.



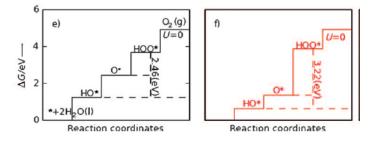
Rossmeisl, 2007, JEAC

Reaction Co-ordinate (& Binding Stength)

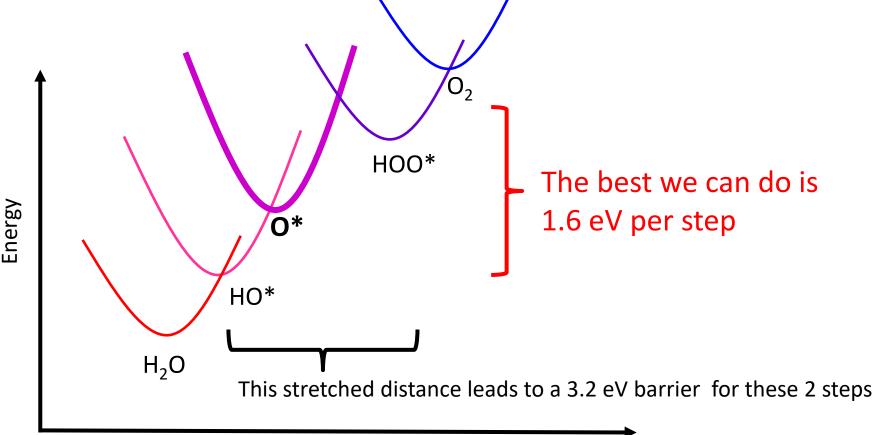

- What if one of the catalyst site is not perfectly aligned
- Your operating voltage is only as low as your slowest (i.e. highest voltage) intermediate


- The rate limiting step is catalyst dependent.
- It is not directly the binding of the HO*, O*, or HOO*.

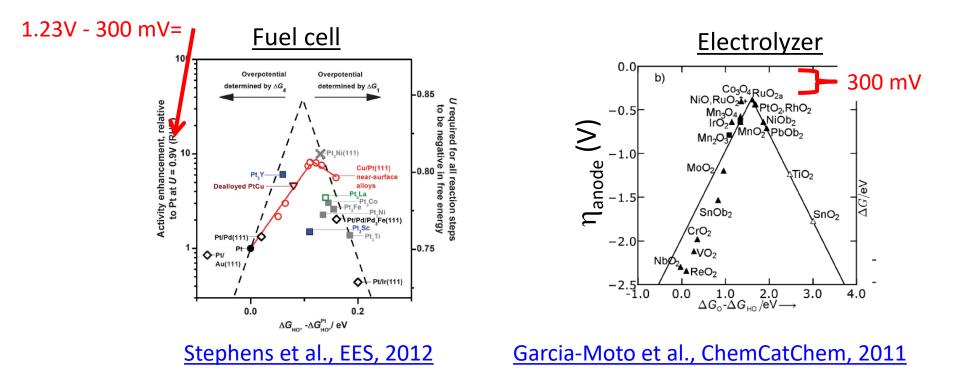
<u>Mechanism</u>


$$\begin{array}{l} 2H_2 O \to H_2 O + H O^* + \ H^+ + e^- \\ \to H_2 O + O^* + 2H^+ + 2e^- \\ \to H O O^* + 3H^+ + 3e^- \\ \to O_2 + 4H^+ + 4e^- \end{array}$$

• Why can't our volcano plot reach 0 V overpotential?

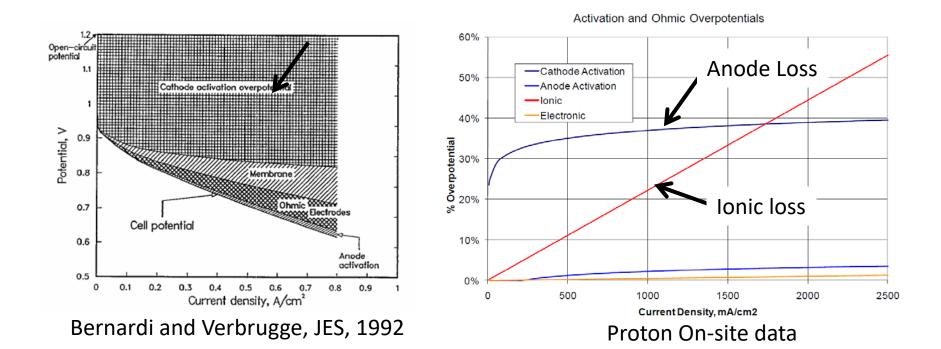


- All 3 intermediates have O bonded to the surface.
- We have 2 ∆G's we want to optimize, and only 1 parameter (bonding strength)
- The result is optimizing one DG, deoptimizes the other.
- <u>This is known as a scaling relationship</u>.

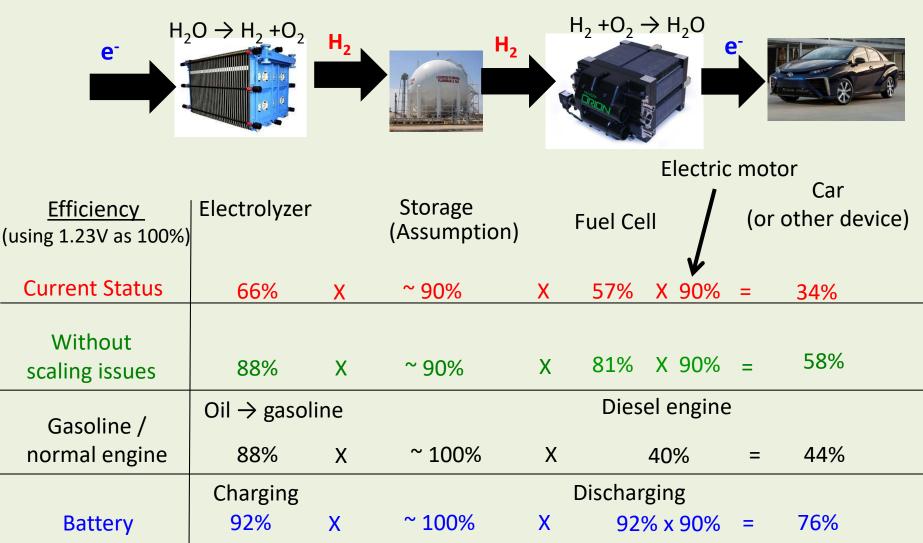


Man et al., ChemCat Chem, 2011

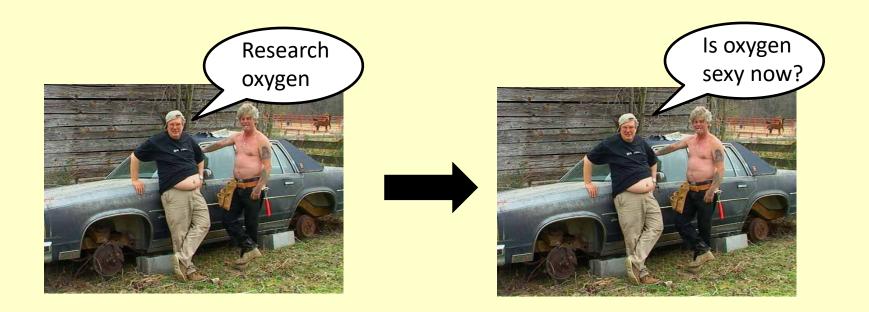
- We can only vary the oxygen-catalyst site
- The scaling relationship does not allow us to optimize each reaction intermediate.



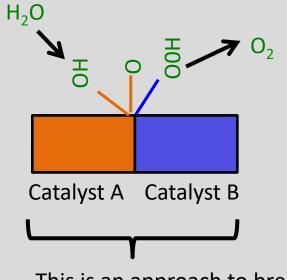
- The scaling relationship forces the 2 electron process of HO*→O*→ HOO* to have a minimum ∆G=~3.2 eV, (1,6 eV/electron.)
- Thus we are forced to have ~400 mV of loss due to this process. In reality high surface area lets us minimize this to ~300 mV.
- This scaling relationship applies to the fuel cell ORR reaction as well.


Effect of scaling relationship

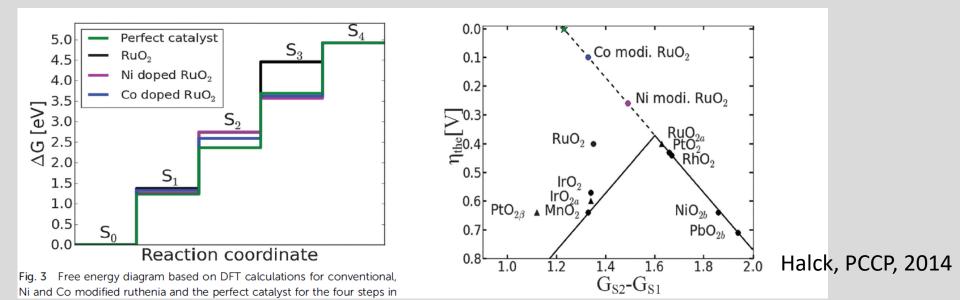
- The scaling relationship is the cause of the majority of losses in both fuel cells and electrolyzers.
- If it we didn't have the scaling relationship issue, the losses on the oxygen side could be realistically as low as the losses on the hydrogen side.


Efficiency Math

- How efficient is our Hydrogen economy?
- How bad is this scaling relationship issue hurting us.

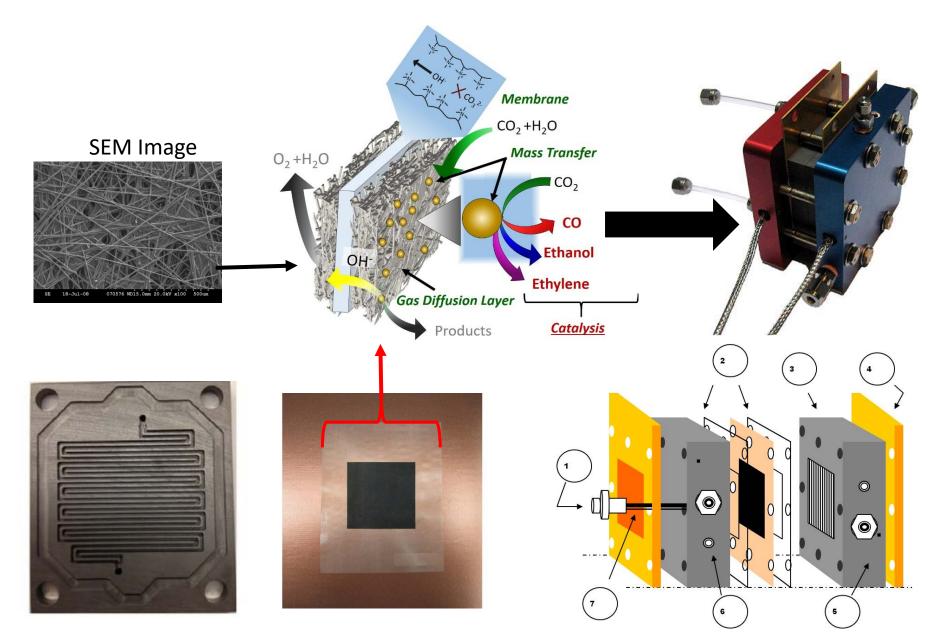

Breaking the scaling relationship

- Can we break the scaling relationship?
- It just could make the Hydrogen economy viable.
- It also would probably give you a Nobel prize.
- Discuss your ideas.



Breaking the scaling relationship

- How about making a catalyst with 2 active sites at basically the same spot.
- This would give us another parameter to optimize- 2 parameters, thus 2 ∆G optimizations.



This is an approach to break the scaling relationship

Break

Electrochemical CO₂ reduction

Anode:
$$H_2 O \to \frac{1}{2}O_2 + 2H^+ + 2e^-$$

Cathode:
$$2H^+ + 2e^- \rightarrow H_2$$

Overall:
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

- Water is plentiful and concentrated.
- H₂ evolution is easy.
- H₂ storage/use is difficult.

CO₂ reduction
Anode:
$$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$$

 $Cathode: \begin{cases}
CO_2 + H^+ + 2e^- \rightarrow HCOO^- \\
CO_2 + 2H^+ + 2e^- \rightarrow CO + 2H_2O \\
CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O \\
2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O \\
And many more
\end{cases}$

Overall: $H_2 + CO_2 \rightarrow C_x O_y H_z + H_2 O$

- CO₂ is not concentrated (400 ppm in air)
- CO₂ is concentrated in biomass waste, cement, etc.
- <u>CO₂ reduction competes with H₂</u> <u>evolution</u>

CO₂ reduction

- The reduction potentials of most of the realistic CO₂ reduction catalysts are very close to the H⁺/H₂ potential.
- Thus all of these reactions need ~1.2 V (or more if including overpotential.)

Reaction	E ⁰ vs. RHE
$2H^+ + 2e^- \to H_2$	0.00 V
$CO_2 + H^+ + 2e^- \rightarrow HCOO^-$	- 0.11 V
$CO_2 + 2H^+ + 2e^- \rightarrow CO + 2H_2O$	+ 0.02 V
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$	+ 0.16 V
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	+ 0.07 V
$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$	+ 0.08 V
$3CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$	+ 0.09 V
$H_2 O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$	+ 1.23 V

Value of Products

- There are 2 ways to go about this:
 - Create products that are in high demand (such as energy based products)
 - Create products that are of high value (Specialty chemicals)

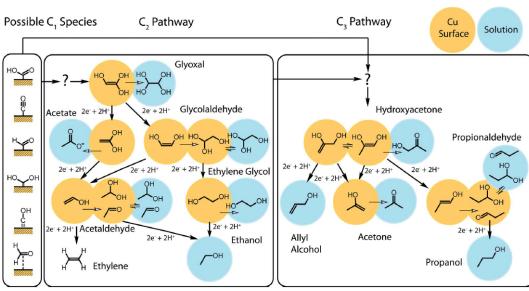
Material	# of e⁻	(\$/ton)	(\$/MC)	World Prod. (megaton)		
Hydrogen	2	1000	0.010	60		
Carbon Monoxide	2	743	0.11	150		
Formic Acid	2	650	0.15	0.8		
Formaldehyde	4	530	0.041	10		
Methanol	6	496	0.027	70		
Methane	8	150	0.003	4000		
Acetic acid	8	460	0.036	12		
Ethylene Glycol	10	1000	0.065	7		
Acetone	16	700	0.064	6		
Ethanol	12	600	0.024	110		
Ethylene	12	1050	0.025	180		

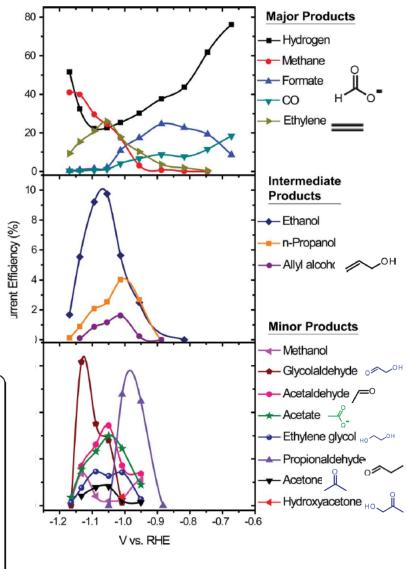
What catalyst to use

- We need a catalyst that is good at CO₂ reduction, but bad at H⁺/H₂ evolution.
- Hori tested a lot of catalysts, and Cu was clearly the best.

Table 1. Various products from the electroreduction of CO_2										
Electrode	Potential (V) vs. nhe	Current density (mA cm ⁻²) CH ₄ C ₂ H ₄ EtOH PrOH CO HCOO ⁻ H ₂								Total
Cu	- 1.44	5.0	33.3	25.5	5.7	3.0	1.3	9.4	20.5	103.5*
Au	-1.14	5.0	0.0	0.0	0.0	0.0	87.1	0.7	10.2	98.0
Ag	- 1.37	5.0	0.0	0.0	0.0	0.0	81.5	0.8	12.4	94.6
Zn	- 1.54	5.0	0.0	0.0	0.0	0.0	79.4	6.1	9.9	95.4
Pd	-1.20	5.0	2.9	0.0	0.0	0.0	28.3	2.8	26.2	60.2
Ga	- 1.24	5.0	0.0	0.0	0.0	0.0	23.2	0.0	79.0	102.0
РЬ	- 1.63	5.0	0.0	0.0	0.0	0.0	0.0	97.4	5.0	102.4
Hg	- 1.51	0.5	0.0	0.0	0.0	0.0	0.0	99.5	0.0	99.5
In	-1.55	5.0	0.0	0.0	0.0	0.0	2.1	94.9	3.3	100.3
Sn	-1.48	5.0	0.0	0.0	0.0	0.0	7.1	88.4	4.6	100.1
Cd	-1.63	5.0	1.3	0.0	0.0	0.0	13.9	78.4	9.4	103.0
Tl	- 1.60	5.0	0.0	0.0	0.0	0.0	0.0	95.1	6.2	101.3
Ni	- 1.48	5.0	1.8	0.1	0.0	0.0	0.0	1.4	88.9	92.4†
Fe	- 0.91	5.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	94.8
Pt	- 1.07	5.0	0.0	0.0	0.0	0.0	0.0	0.1	95.7	95.8
Ti	-1.60	5.0	0.0	0.0	0.0	0.0	tr.	0.0	99.7	99.7

Electrolyte: 0.1 M KHCO₃; temperature: $18.5 \pm 0.5^{\circ}$ C.

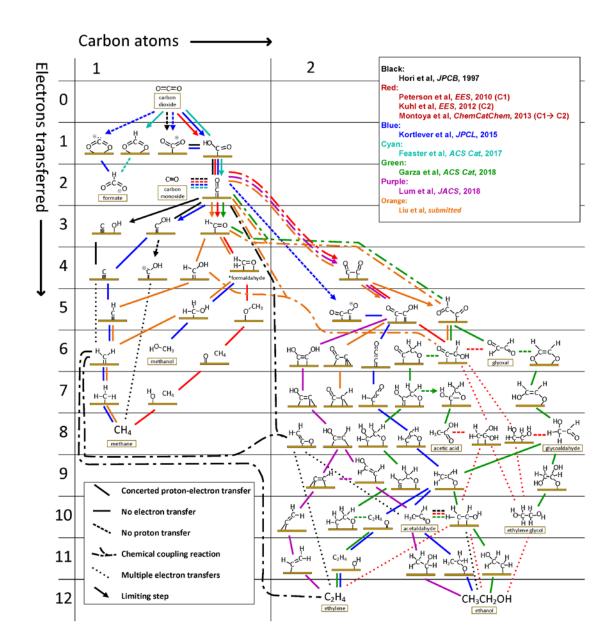

* The total value contains C_3H_5OH (1.4%), CH_3CHO (1.1%) and C_2H_5CHO (2.3%) in addition to the tabulated substances.


+ The total value contains C_2H_6 (0.2%).

<u>Hori, ECA, 1994</u>

Copper as a catalyst

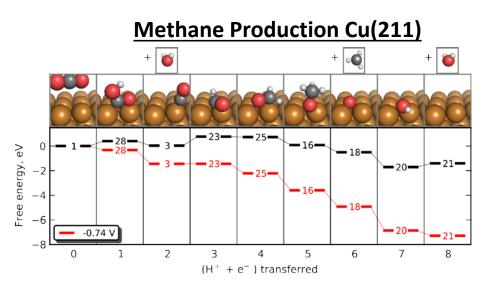
- Tom Jaramillo's group showed that there are a wide variety of products coming from copper.
- They used NMR rather than the typical gas chromatograph to analyze their products.

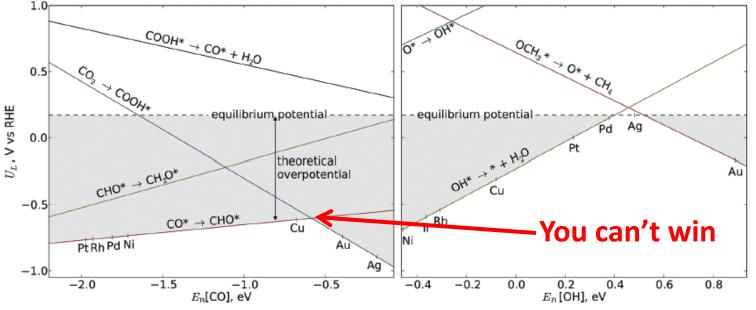


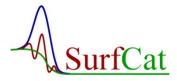
Kuhl et al., EES, 2012

Mechanisms (we think)

- Everything but formate goes through a CO intermeidate.
- Everything else is a mystery.




Søren Scott's Masters Thesis


Scaling Issues? Yes

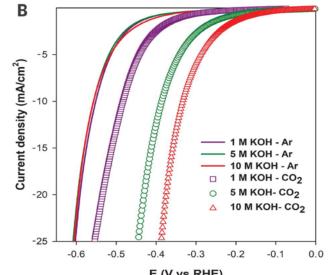
- CO₂ reduction has scaling relationship issues.
- Cu is the best candidate though.

Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov. *Energy Environ Sci* 2010 Peterson, Nørskov, *JPCL* 2012

Scaling Relationships

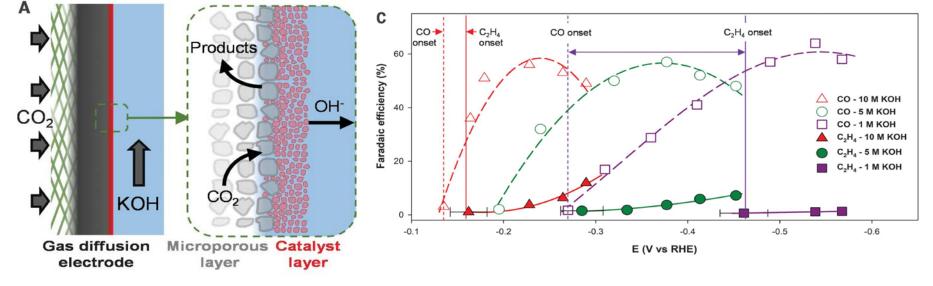
"It is better to avoid a scaling relationship than to fight through it" - Common Sense

- Scaling in CO₂ reduction is slightly different than scaling in O₂ reduction/ water oxidation.
 - <u>CO₂ reduction has stable intermediates</u>
- This allows us to employ a 2-step process.


Cathode #1:
$$CO_2 + 2e^- + H_2O \rightarrow CO + 2OH^-$$

Cathode #2: $xCO + yH^+ + ae^- + \rightarrow C_xH_yO_z$
anode #1 & #2: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$

• We know how to take CO₂ to CO quite efficiently.


	Potential (V)	density	Faradaic efficiency/%								
Electrode	vs. nhe	$(mA \ cm^{-2})$	CH₄	C_2H_4	EtOH	PrOH	CO	HCOO ⁻	H ₂	Total	Hori, Y.; et al.
Cu	- 1.44	5.0	33.3	25.5	5.7	3.0	1.3	9.4	20.5	103.5*	Electrochim. Acta.,
Au	-1.14	5.0	0.0	0.0	0.0	0.0	87.1	0.7	10.2	98.0	1994

Breakthrough in the Field

- In May 2018, a fuel cell approach was used that gave very good results.
- This approach gave:
 - Easier mass transfer
 - Eliminated H₂ side products
 - Lower overpotentials

Dingh et al., Science, 2018

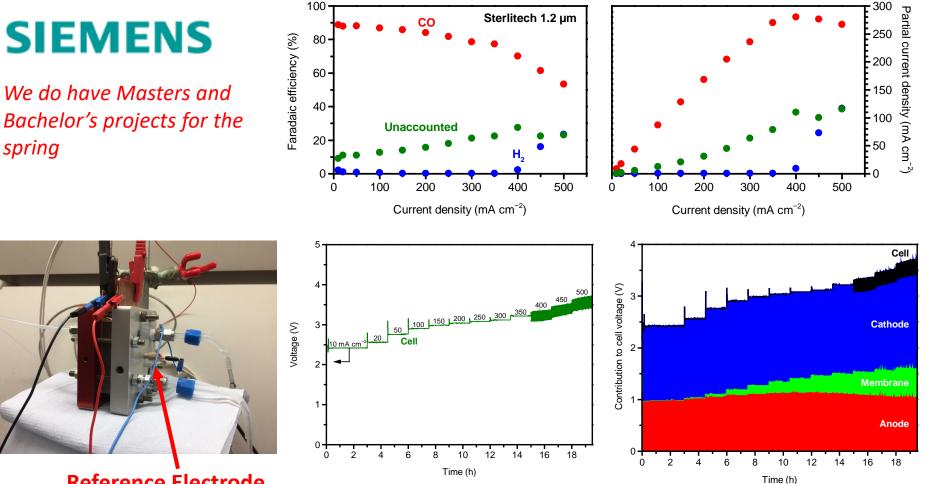
Breakthrough in the Field

• CO₂ dissolves in water as carbonic acid, which sets the pH.

 $CO_2 + 2H^+ + 2e^- \rightarrow CO + 2H_2O$ Equivalent Equations $CO_2 + H_2O + 2e^- \rightarrow CO + 2OH^-$

- However very high currents will give a basic environment.
- Our limiting step in our reaction mechanism is probably:

 $CO_2 + e^- \rightarrow COO^-$


Since there is no H⁺/ OH⁻ in this step, it is pH independent. If we go to high pH, this makes H₂ evolution hard, thus favoring CO₂ reduction over H₂ evolution

 $2H_2O \rightarrow H_2 + 20H^-$

This slide is just a theory and could be wrong, so you will not be tested on it

CO₂ Reduction at DTU

We are studying this from a fundamental standpoint (mechanistically) and a scale up standpoint.

Reference Electrode

spring

CO₂ Reduction - Future

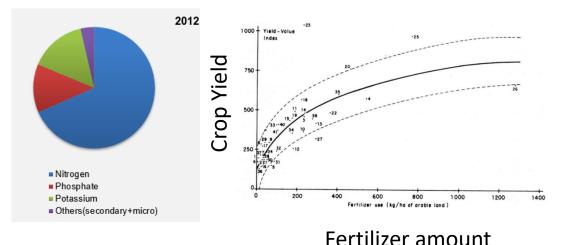
- The field is very active, but still very young. I lead the group at DTU / Stanford working on this.
- CO₂ to Chemicals is promising, but CO₂ to fuels is economically difficult.
- Currently the CO₂ reduction overpotential is around 0.5 V to 1 V for most products, so the efficiency is not good at all.
- Shell, Siemens, Topsoe Catalyst are all actively working in this field.

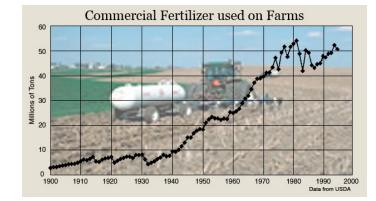
Learning Objectives

- From this lecture you should be able to understand:
 - The fundamental physics behind electrolyzers.
 - How to improve the efficiency/costs of electrolyzers.
 - The fundamental scientific principles behind CO₂ reduction.

Exercises

- If you are operating at 1 A/cm², what is the volumetric production rate of H_2 at 25C and 1bar pressure.
- If we have 100 GW electrolyzers that operate 80% of the time at an efficiency of 90%, how much H₂ can be produced in 1 year. If all the world's energy consumption (11.8 TW) is from electricity produced by a fuel cell (operated at 0.8V), how long can the world run solely on our annual H₂ production.


Exercises


 Let say you want to reduce CO₂ to methanol. if the O₂ evolution has 300 mV and the CO₂ reduction has 500 mV overpotential, what is your overall efficiency? Does efficiency depend on current? Explain. Bonus Slides (not on test)

Nitrogen reduction

Fertilizers

- The majority of fertilizers are NH_3 or NH_3 based.
- Fertilizers have allowed incredible increases in productivity.
- Cheap food, allows for population growth.
- NH₃ production is based off of fossil fuels.
- 1.2 % of world's energy goes to NH₃ production.

Based of USDA data

FAO, Bulletin, 1981

N₂ reduction

- Ammonia production is made almost exclusively be the Haber-Bosch process.
- This consumes 1-2 % of the world's energy.

 $N_2 + 3H_2 \rightarrow 2NH_3$ $\Delta H = -92.4 \text{ kJ/mol}$

- The reaction is thermodynamically favored, but kinetically hindered.
- N₂ has a triple bond which is very hard to break.
- This conversion is typically conducted at a pressure of 150– 250 bar and a temperature of 400–500 °C.

Electrochemical N₂ reduction

Researchers are now trying to electrochemically reduce N₂ to ammonia.

Anode: $3(H_2 \rightarrow +2H^+ + 2e^-)$ cell anode Cathode: $N_2 + 6e^- + 6H^+ \rightarrow 2NH_3$

Overall: $N_2 + 3H_2 \rightarrow 2NH_3$

- There have been many reports of this reaction occuring, but few (if any) have reproducable results.
- The difficulty is breaking the nitrogen triple bond.
- However the nitrogense enzyme does this reaction (albeit at 50% selectivity), so it is possible.
- We are currently working on this at DTU.